与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(学生版)_第1页
与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(学生版)_第2页
与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(学生版)_第3页
与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(学生版)_第4页
与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(学生版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

易圆彳吴妁计算

题型徐速

模型01阴影部分面积计算

方法一直接利用公式法求阴影部分面积

方法二直接或构造和差法求阴影部分面积

求阴影部分面积方法总结

方法三利用等积转换法求阻影部分面积

方法四利用容斥原理求阴影部分面积

求阴影部分面积在考试中主要考查学生对图形的理解和数形结合的认识能力具有一定的难度.一般考试

中选择题或填空题型较多,熟练掌握扇形面积、弧长的计算、等边三角形的判定和性质,特殊平行四边形性质

是解题的关键.

模型02阴影部分周长计算

求阴影部分弧长或周长的计算,掌握弧长计算方法是正确计算的前提,求出相应的圆心角度数和半径是

正确计算的关键.该题型一般考试中选择题或填空题型较多,圆心角是九。,圆的半径为R的扇形面积为S,则

S扇形=47T兀&或S扇形==田(其中/为扇形的弧长).熟练应用公式是解题的关键.

模型03与最值相关的计算

阴影部分面积和周长中求最值,此题有一定的难度,解题中注意掌握辅助线的作法,注意掌握方程思想与

数形结合思想的应用.本题考查中经常与轴对称--最短路线问题、勾股定理、等边三角形的判定和性

质、含30°角的直角三角形的性质、垂线段最短等知识点相结合,解这类问题的关键是将所给问题抽象或

转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.

廷结•牌型铀建[

模型01阴影部分面积计算

考I向隅I测

阴影部分面积计算问题该题型主要以选择、填空形式出现,目前与综合性大题结合考试,作为其中一问,

难度系数不大,在各类考试中都以中档题为主.解这类问题的关键是将所给问题抽象或转化为规则图形的

面积进行求解,属于中考选择或填空题中的压轴题.

•••

答I题I技I巧

第一步:确定弧所对的圆心,(找圆心)

第二步:连接圆心与弧上的点;(连半径)

第三步:确定圆心角度数(有提示角度的话注意求解相应角,没有提示角度的话一般为特殊角,大胆假

设小心论证)

第四步:把不规则图形面积转化为规则图形面积进行求解

|即型T<5'I

题目Q(2023•四川)一个商标图案如图中阴影部分,在长方形ABCD中,AB=6cm,BC=4cm,以点A为

圆心,人。为半径作圆与氏4的延长线相交于点F,则阴影部分的面积是()

FAB

A.(4TL+4)cm2B.(47r+8)cm2C.(8TU+4)cm2D.(47t—16)cm2

题目区(2023・湖北)如图,在4ABC中,乙4=90°,AB=3,47=6,。是BC边上一点,以。为圆心的半圆

分别与ABAC边相切于。,E两点,则图中两个阴影部分面积的和为.

模型02阴影部分周长计算

考|命|殖|何

阴影部分弧长或周长计算该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题

型主要考查求与弧结合的不规则图形的周长,准确应用弧长公式是解题的关键.但许多实际问题

没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成求规则图形

的长度问题.

答I题I技I巧

第一步:观察图形特点,确定弧长和线段长;

第二步:利用弧长公式求长度;

第三步:求图形中其它边的长度;

[题型守例

题目[(2023•河北)如图,正方形ABCD的边长为2,分别以为圆心,以正方形的边长为半径的圆相较

2

于点P,那么图中阴影部分①的周长为,阴影部分①②的总面积为.

]题目@(2023•浙江)如图,正方形ABCD中,分别以。为圆心,以正方形的边长a为半径画弧,形成树叶

形(阴影部分)图案,则树叶形图案的周长为.

模型03与最值相关的计算

者|向|颈|恻

圆的弧长与面积和量值相关的计重主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常

以压轴题的形式考查,学生不易把握.该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该

题型主要考查轴对称——最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线

段最短”“点到直线距离垂线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它

相等的线段替代,从而转化成两点之间线段最短的问题,进而解决求阴影部分的最值问题.

答I题I技I巧

第一步:观察图形特点,确定变量和不变的量(一般情况下弧长固定,线段长变化)

第二步:利用将军饮马或者“两点之间线段最短”“点到直线距离垂线段最短”等知识点进行转化

第三步:牢记弧长公式,求对弧长和线段长;

第四步:利用数形结合思想注意确定最值;

|题型<5'1

题目Q(2023•江苏)如图,点。为:圆。上一个动点,连接AC,若=1,则阴影部分面积的最小值

为()

I题目区(2022•浙江)如图,。O是以坐标原点。为圆心,4V2为半径的圆,点P的坐标为(2,2),弦AB经过

点P,则图中阴影部分面积的最小值为()

1题目区(2023・吉林)如图,在Rt/\ABC中,AACB=90°,=30°,AC=4,以AB直径作圆,P为B。边的

垂直平分线OE上一个动点,则图中阴影部分周长的最小值为.

题目—(2023•江苏)如图,在Rt/XABC中,/A=90°,AB=3,AC=4,以。为圆心的半圆分别与AB、AC边

相切于O、E两点,且。点在BC边上,则图中阴影部分面积$阴=()

A

E

D/

BOC

1口兀r3「15036

AA•万BTC.5一铲口.而一而乃

题目⑥(2022.湖北)如图,在Rt/XABC中,/。=90°,48=6,AD是ABAC的平分线,经过4。两点的圆

的圆心。恰好落在上,。O分别与AB、AC相交于点E、F.若圆半径为2.则阴影部分面积(

题目回(2023•安徽)如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆。中

题目⑷(2022•广西)如图所示,OO是以坐标原点O为圆心,4为半径的圆,点P的坐标为(方,0),弦

经过点P,则图中阴影部分面积的最小值等于()

A.2兀一4B.4兀-8C.电工6A后D.16兀1,遍

OO

题目回(2023・山东)如图,正比例函数与反比例函数的图象相交于AB、两点,分别以AB、两点为圆心,画与

力轴相切的两个圆,若点4的坐标为(2,1),则,图中两个阴影部分面积的和是()

A.《兀B.±-兀C.兀D.4兀

24

题目但(2023•山西)如图,在AWLB。中,NC=90°,/B=30°,点。在AB上,以O为圆心作圆与相切

于点。,与相交于点E、F;连接AD、F。,若。O的半径为2.则阴影部分面积为()

2

B.4兀C.?兀D.■!■兀-血

Oo0

题目[(2023•黑龙江)如图,AABC中,/力CB=90°,AC=BC=4,分别以点A,B为圆心,AC,BC的长

为半径作圆,分别交于点DE,则弧CD弧CE和线段DE围成的封闭图形(图阴影部分)的面积

(结果保留兀)

题目回(2022•河南)在矩形ABCD中,AB=4,AO=42,以BC为直径作半圆(如图1),点P为边CD上一

点.将矩形沿BP折叠,使得点。的对应点E恰好落在边AO上(如图2),则阴影部分周长是•

1题目⑥(2022•内蒙古)如图,在Rt/\AOB中,/AOB=90°,以。为圆心,的长为半径的圆交边AB于点

D,点、。在边04上且CD=AC,延长CD交OB的延长线于点E.

⑴求证:CD是圆的切线;

⑵已知sin/°S=M0'求AC长度及阴影部分面积.

题目切如图,在以点。为圆心的半圆中,48为直径,且AB=4,将该半圆折叠,使点人和点B落在点。

处,折痕分别为EC和FD,则图中阴影部分面积为()

ACODR

A.473-^-B.4V3-^C.2述一看D.2遍一誓

oOoo

题目囱如图,在矩形ABCD中,AB=4,BC=6,点E是AB中点,在AD上取一点G,以点G为圆心,GD

的长为半径作圆,该圆与BC边相切于点F,连接则图中阴影部分面积为()

C.2兀+6D.5兀+2

题目团如图,四边形ABC。为正方形,边长为4,以石为圆心、石。长为半径画卷,E为四边形内部一点,

且BELCS,ZBCE=30°,连接AE,求阴影部分面积()

A.4兀—2A/3B.6兀C.47r—2—2A/3D.47r—3-2A/3

题目目如图,正三角形ABC的边长为4cm,D,E,F分别为反7,AC,的中点,以A,B,。三点为圆

心,2cm为半径作圆.则图中阴影部分面积为()

A.(2A/3—7r)cm2B.(7U—V3)cm2C.(4V3—27U)cm2D.(2TT—2V3)cm2

I题目回如图,在Rt/SAOB中,AAOB=90°,04=2,OB=1,将Rt/\AOB绕点O顺时针旋转90°后得

Rt/XFOE,将线段EF绕点、E逆时针旋转90°后得线段即,分别以。,E为圆心,。4、ED长为半径画弧

AF和弧OF,连接AO,则图中阴影部分面积是()

A•兀B.TT+5C-f-fD4-f

题目回如图,在半径为2、圆心角为90°的扇形OAB中,后0=2形,点。从点。出发,沿。一A的方向运动

到点A停止.在点。运动的过程中,线段BO,CD与怎所围成的区域(图中阴影部分)面积的最小值为

A至B.等-1C兀

C•3D

3-f4

题目R]如图,矩形ABCD中,AB=4,BC=3,P是AB中点,以点A为圆心,4D为半径作弧交AB于点

E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1—S2为()

题目回如图,在半径为4的扇形0AB中,乙4OB=90°,点。是卷上一动点,点。是。。的中点,连结AD

并延长交05于点E,则图中阴影部分面积的最小值为()

A.4兀—4B.4兀—空③C.2兀—4D.2兀—当§

OO

题目回如图,在/?必48。中,/。=90°,AB=6,4D是/A4C的平分线,经过4。两点的圆的圆心。恰

好落在AB上,©。分别与48、AC相交于点E、F.若圆半径为2.则阴影部分面积=.

题目3如图,在AtZXABC中,NA=30°,BC=2通,点。为4。上一点,以。为圆心,。。长为半径的圆

与AB相切于点。,交A。于另一点E,点F为优弧DCE上一动点,则图中阴影部分面积的最大值为

题目兀如图,点。为十圆。上一个动点,连接力C,BC,若OA=1,则阴影部分面积的最小值为

题目亘I如图所示,。。是以坐标原点。为圆心,4为半径的圆,点P的坐标为①V2),弦AB经过点P,

则图中阴影部分面积的最小值=.

题目H

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论