




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第11章图形的运动(基础、常考、易错、压轴)分类专项训练
【基础】
一、单选题
1.(2021•上海奉贤•七年级期末)下列语句判断正确的是()
A.等边三角形是轴对称图形,但不是中心对称图形
B.等边三角形既是轴对称图形,又是中心对称图形
C.等边三角形是中心对称图形,但不是轴对称图形
D.等边三角形既不是轴对称图形,也不是中心对称图形
【答案】A
【分析】根据等边三角形的对称性判断即可.
【详解】•••等边三角形是轴对称图形,但不是中心对称图形,
都不符合题意;
故选:A.
【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
2.(2022•上海•七年级单元测试)图2是由图1经过某一种图形的运动得到的,这种图形的运动是
()
4XX
XK5
图1图2
A.平移B.翻折C.旋转D.以上三种都不对
【答案】C
【详解】解:根据图形可知,这种图形的运动是旋转而得到的,
故选:C.
【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,
叫做图形的旋转)是解题关键.
3.(2022•上海•七年级单元测试)如图所示的图案,可以看作由"基本图案”经过平移得到的是()
OB力
emDcao
【答案】B
【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移
变换,简称平移,即可选出答案.
【详解】解:A、不是由"基本图案”经过平移得到,故此选项不符合题意;
B、是由"基本图案”经过平移得到,故此选项符合题意;
C、不是由〃基本图案”经过平移得到,故此选项不符合题意;
D、不是由〃基本图案”经过平移得到,故此选项不符合题意;
故选B.
【点睛】本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.
4.(2022・上海•七年级单元测试)在下列实例中,①时针运转过程;②火箭升空过程;③地球自转过程;④
飞机从起跑到离开地面的过程;不属于平移过程的有()
A.1个B.2个C.3个D.4个
【答案】B
【分析】根据平移的定义,逐一判断即可解答.
【详解】解:在下列实例中:
①时针运转过程,不属于平移;
②火箭升空过程,属于平移;
③地球自转过程,不属于平移;
④飞机从起跑到离开地面的过程,属于平移;
所以,不属于平移过程的有2个,
故选:B.
【点睛】本题考查了平移的定义,掌握平移的定义是解题的关键.平移,是指在同一平面内,将一个图形上
的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移.
5.(2022•上海•七年级单元测试)中国汉字中,有的汉字是轴对称图形.下面4个汉字中,是轴对称图形
的是()
A共B同C战D疫
【答案】A
【详解】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形
叫做轴对称图形进行分析即可.
【解答】解:A.是轴对称图形,故此选项符合题意;
B.不是轴对称图形,故此选项不合题意;
C.不是轴对称图形,故此选项不合题意;
D.不是轴对称图形,故此选项不合题意.
故选:A.
【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是解题的关键.
6.(2022•上海•七年级单元测试)在图形的旋转中,下列说法不正确的是()
A.旋转前和旋转后的图形一样B.图形上的每一个点到旋转中心的距离都相等
C.图形上的每一个点旋转的角度都相同D.图形上可能存在不动的点
【答案】B
【分析】根据旋转的性质对A、B、C进行判断;利用旋转中心为图形上一点的情况可D进行判断.
【详解】解:A、旋转前和旋转后的图形全等,故A选项不符合题意;
B、在图形上的对应点到旋转中心的距离相等,故B选项符合题意;
C、图形上每一点移动的角度相同,都等于旋转角,故C选项不符合题意;
D、图形上可能存在不动的点,故D选项不符合题意.
故选:B.
【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于
旋转角;旋转前、后的图形全等.
7.(2022•上海宝山•七年级期末)下列说法正确的是()
A.轴对称图形是由两个图形组成的B.等边三角形有三条对称轴
C.两个等面积的图形一定轴对称D.直角三角形一定是轴对称图形
【答案】B
【分析】根据轴对称图形的定义逐一进行判定解答.
【详解】解:A,轴对称图形可以是1个图形,不符合题意;
B.等边三角形有三条对称轴,即三边垂直平分线,符合题意;
c、两个等面积的图形不一定轴对称,不符合题意;
久直角三角形不一定是轴对称图形,不符合题意.
故选:B.
【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这
个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.
8.(2022•上海•七年级期末)如图,ASC沿射线方向平移到』(点E在线段BC上),如果
3c=8cm,EC=5cm,那么平移距离为()
A.3cmB.5cmC.8cmD.13cm
【答案】A
【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE,进而可得答
案.
【详解】解:根据平移的性质,
易得平移的距离=8£=8-5=3cm,
故选:A.
【点睛】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,
本题关键要找到平移的对应点.
9.(2022•上海市实验学校西校七年级阶段练习)在直角坐标平面内,已知点6和点4(3,4)关于x轴对称,
那么点8的坐标()
A.(3,4)B.(-3,-4)C.(3,-4)D.(-3,4)
【答案】C
【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数解答.
【详解】解:•••点6和点/⑶4)关于x轴对称,
.,.点8的坐标为⑶-4),
故选:C.
【点睛】本题考查的是关于x轴、y轴对称的点的坐标,掌握关于x轴的对称点的坐标特点:横坐标不变,
纵坐标互为相反数是解题的关键.
10.(2022•上海•七年级专题练习)如图,把图中的ASC经过一定的变换得到_A'3'C',如果图中.ABC
上的点尸的坐标为(。力),那么它的对应点P的坐标为()
C.(~a-2,_b)D.(a+2,_b)
【答案】C
【分析】先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.
【详解】解:由图可知,△ABC与AA,B,L关于点(-1,0)成中心对称,
设点P'的坐标为(x,y),
0=0,
22
解得x=-a-2,y=-b,
/.P'(_a_2,-b).
故选C.
【点睛】本题考查旋转性质,准确识图,观察出两三角形成中心对称,对称中心是(T,0)是解题的关键.
11.(2022•上海•七年级单元测试)在下面的网格图中,每个小正方形的边长均为1,AABC的三个顶点都
是网格线的交点,已知B,C两点的坐标分别为(-1,-1),(1,-2),将AABC绕点C顺时针旋转90°,则点A
的对应点的坐标为()
A.(4,1)B.(4,-1)C.(5,1)D.(5,-1)
【答案】D
【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出4ABC绕点C顺时针旋转90°后点A
的对应点的A,,然后写出点A,的坐标即可.
【详解】解:如图,A点坐标为(0,2),将AABC绕点C顺时针旋转90°,则点A的对应点的A'的坐标为⑸
-1).
故选D.
【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转
后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
12.(2022・上海•七年级单元测试)在学习了平移、旋转、轴对称变换知识后,老师要求同学们在智能俄
罗斯方块游戏拼图操作中理解、体会、感悟知识的灵活运用.如图所示的方块拼图游戏中,已拼好了部分
图案,现又出现一小方格体正向下运动,为了使移动的小方格与下方图案拼接成一个完整图案,使所有图案
自动消失,你的正确操作是(
A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移
C.顺时针旋转90°,向下平移D.逆时针旋转90°,向下平移
【答案】A
【分析】根据小方格体的两格与三格的不同,结合要填入的空格的形状解答.
【详解】解:观察图形可知,出现的小方格体需顺时针旋转90°,向右平移.
故选:A.
【点睛】本题考查了利用旋转设计图案,利用平移设计图案,认准小方格的特征与需要填入的空格的形状是
解题的关键.
二、填空题
13.(2022•上海•七年级单元测试)如图,将△/及7的边绕着点/顺时针旋转a(0。<«<90。)得至UA3’,
边绕着点A逆时针旋转夕(0。<刀<90。)得到AC,联结B'C.当a+6=30。时,我们称AAB'C是,ABC
的"双旋三角形”.如果等边,ABC的边长为a,那么它的"双旋三角形”的面积是(用含a的代数式
表示).
【答案】g/
【分析】首先根据等边三角形、"双旋三角形”的定义得出△/月C是顶角为90。的等腰三角形,其中
AB=AC=a.然后根据面积公式计算.
【详解】解析V等边的边长为a,
:.A8=AC=a,/掰C=60°,
将△板的边四绕着点A顺时针旋转。(0。<a<90。)得到AB',
:.AB'=AB=a,ZB'AB=a,
V边检绕着点A逆时针旋转/(0°<13<90°)得到AC,
:.AC'=AC=a,NCAC=0,
/.ZB'AC=ZB'AB+ABAC+NC4C'=a+60。+#=60。+30°=90°,
•*.^,AC=5a♦Q=5a?.
故答案为:5。.
【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于
旋转角;旋转前、后的图形全等.等边三角形的性质以及直角三角形的面积.解题关键理解旋转的性质.
14.(2022•上海•七年级期末)把一个图形整体沿某一个方向平移,会得到一个新图形,新图形与原图形相
比和完全相同.
【答案】形状大小
【分析】根据平移的性质填空即可.
【详解】解:把一个图形沿着某一方向平移,会得到一个新的图形,新图形与原图形的形状和大小完全相
同.
故答案为:形状,大小.
【点睛】本题考查了平移的性质,是基础题,需熟记.
15.(2022•上海•七年级单元测试)如图,已知AABC的三个角,ZA=21°,ZB=140°,NC=19°,将AABC
绕点A顺时针旋转,得到如果NBA尸=58°,那么a=.
【答案】79。##79度
【分析】根据求出NC4P=79°,即可求出旋转角的度数.
【详解】解:AABC绕点A顺时针旋转"得到A4£F,
则ZCAF=a,
ZG4F=ZC4B+ZBAF=21O+58O=79°,
故答案为:79°.
【点睛】本题考查了旋转的性质,解题关键是明确旋转角度为NC4歹的度数.
16.(2022・上海•七年级单元测试)如图,将ABC沿方向平移3cm得到DEF,若ABC的周长为
16cm,则四边形ABFD的周长为.
【答案】22cm
【分析】根据平移的性质可得上然后求出四边形/母》的周长等于△/8C的周长与⑷、〃的和,再代
入数据计算即可得解.
【详解】解:•••△/苑沿欧方向平移3cm得到△侬;
:・D六AC,/分6Tz=3cm,
J四边形4W的周长二△/比1的周长+/"•诉16+3+3=22cm.
故答案为:22cm.
【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行
且相等,对应线段平行且相等,对应角相等.
17.(2022•上海•七年级期末)已知线段AB的长度为3厘米,现将线段AB向左平移4厘米得到线段CD,那
么线段CD的长度为____厘米.
【答案】3
【分析】根据平移的性质即可得.
【详解】由平移的性质得:线段CD的长度等于线段AB的长度,
则线段CD的长度3厘米,
故答案为:3.
【点睛】本题考查了图形的平移,熟练掌握平移的性质是解题关键.
18.(2022•上海•七年级期末)如果长方形的长和宽不相等,那么它有条对称轴.
【答案】2
【分析】如果长方形的长和宽不相等,那么它沿着经过相对两边的中点的直线对折,直线两旁的部分能够重
合,这样的直线有2条.
【详解】如果长方形的长和宽不相等,那么它有2条对称轴.
故答案为:2
【点睛】本题考查的是长方形的对称轴,掌握轴对称的定义及对称轴的定义是关键.
19.(2022•上海•七年级期末)如图,ABC顺时针旋转能与VADE重合,且/应归=70。,则旋转角是
度.
【答案】35
【分析】由^ABC顺时针旋转能与4ADE重合,且/BAE=70°,即可求得旋转角的度数.
【详解】解::△ABC顺时针旋转能与4ADE重合,且NBAE=70°,
AZBAC=ZDAE=^-ZBAE=35°.
旋转角的大小是35°.
故答案为:35.
【点睛】本题考查旋转的性质,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.
20.(2022•上海•七年级期末)小王是学校足球队的成员,他穿着自己的球衣站在镜子前,看到镜子里球衣
的号码如图所示,那么他实际的球衣号码是.
21
【答案】15
【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面成轴对称图形即
可得出答案.
【详解】V2的对称图形是5,1的对称图形还是1
•••他的实际球衣号码为15
故答案为15
【点睛】本题主要考查轴对称图形的特点,掌握轴对称图形的特点是解题的关键.
21.(2022•上海•七年级期末)如图,AA0B绕点0顺时针旋转得到已知点A、0、D在一条直线上,
且/A0B=30°,则旋转角为°.
【答案】150
【分析】根据旋转图形的特点可知/COD=30。,再利用平角的定义即可求出旋转角.
【详解】:△A0B绕点0顺时针旋转得到
ZCOD=ZAOB=30°
;・旋转角ZAOC=180°-ZCOD=150°
故答案为150
【点睛】本题主要考查旋转角的概念,掌握旋转角的概念是解题的关键.
22.(2022•上海•七年级期末)等边三角形是旋转对称图形,它至少绕对称中心旋转度,才能和
本身重合.
【答案】120
【分析】根据旋转角和旋转对称图形的定义结合图形特点即可得出答案.
【详解】360°+3=120°
所以等边三角形至少绕对称中心旋转120。,才能和本身重合.
故答案为120
【点睛】本题主要考查旋转对称图形的特点,掌握旋转对称图形的特点是解题的关键.
23.(2022•上海•七年级期末)平面直角坐标系中,点A⑵3)关于x轴的对称点坐标为.
【答案】(2,-3).
【详解】试题分析:根据平面直角坐标系中,关于x轴对称的点的坐标特征可知,点A(2,3)关于x轴的对称
点坐标为(2,-3).
考点:关于坐标轴对称的点的坐标特征.
【常考】
选择题(共5小题)
1.(2020秋•静安区期末)如图,从图形甲到图形乙的运动过程可以是()
B.先逆时针旋转90°,再向右平移4格
C.先逆时针旋转90°,再向右平移1格
D.先顺时针旋转90°,再向右平移4格
【分析】利用网格特点,根据对折的性质、旋转的性质和平移的性质进行判断.
【解答】解:把图形甲沿直线/翻折,然后再向右平移4个单位可得到图形乙,如图.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等
于旋转角;旋转前、后的图形全等.也考查了平移的性质.
2.(2018秋•浦东新区期末)如图在一块长为12私宽为6®的长方形草地上,有一条弯曲的柏油小路(小路任
何地方的水平宽度都是2加,则空白部分表示的草地面积是()
【分析】根据矩形面积公式可求矩形的面积;因为柏油小路的任何地方的水平宽度都是2,其面积与同宽
的矩形面积相等,故可求草地面积.
【解答】解:草地面积=矩形面积-小路面积
=12X6-2X6
=60(,).
故选:B.
【点评】此题考查生活中的平移现象,化曲为直是解决此题的关键思路.
3.(2018秋•闵行区期末)如图,五角星绕着它的旋转中心旋转,使得△/勿与△颂重合,那么旋转角的度数
至少为()
A.60°B.120°C.72°D.144°
【分析】由于五角星的五个角可组成正五边形,根据正五边形的性质得到正五边形的中心角为72°,然
后可判断要使△/8C与△龙尸重合,旋转角的度数至少为2个72°.
【解答】解:五角星的五个角可组成正五边形,而正五边形的中心角为毡匚=72°,
5
所以五角星绕着它的旋转中心至少顺时针旋转2个72°,使得回与△颂重合.
故选:D.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等
于旋转角;旋转前、后的图形全等.也考查了正五边形的性质.
4.(2018秋•宝山区期末)如图所示,将矩形纸片先沿虚线46按箭头方向向右对折,接着对折后的纸片沿虚
线切向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()
【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用
对称性与排除法求解.
【解答】解:..•第三个图形是三角形,
•••将第三个图形展开,可得即可排除答案A,
再展开可知两个短边正对着,
选择答案〃排除8与C.
故选:D.
【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案
就会很直观地呈现.
5.(2018秋•闵行区期末)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称
图形,则把阴影涂在图中标有数字()的格子内.
A.1B.2C.3D.4
【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答
案.
【解答】解:如图所示,
把阴影涂在图中标有数字3的格子内所组成的图形是轴对称图形,
故选:C.
【点评】本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定
图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.
—.填空题(共7小题)
6.(2020秋•宝山区期末)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A'
B',的位置,使4C、B'三点共线,那么旋转角度的大小为135度.
【分析】旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转
角相等.
【解答】解:根据旋转的性质可知,///=//'CB'=45°,那么旋转角度的大小为=180°
-45°=135°.
【点评】本题考查旋转的性质,要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
7.(2018秋•松江区期末)如图,在长方形ABCD中,AB=1cm,BC=\Qcm,现将长方形ABCD向右平移3cm,再向
下平移4M后到长方形ABCD的位置,月交8c于点E)D交加于点F,那么长方形的周长
为20
A'
BE
B'
【分析】根据平移的距离表示出长方形/'印的长和宽,即可求出结论.
【解答】解:由题意得到应'=3颂,0'=4创
*.*AB=DC=7cm,BC=10cm,
EC=10c2Z7-3cm=7cm,FC=7cm-4c/n=3cm,
:.长方形4的周长=2X(7+3)=20(cm),
故答案为20.
【点评】本题考查了平移的性质,认准图形,准确求出长方形戊下的长和宽是解题的关键.
8.(2018秋•崇明区期末)如图,将周长为8颂的△加。沿比方向平移1c0得到△呼则四边形"跳2的周
长为10cm.
【分析】根据平移的基本性质,得出四边形四出的周长=4由4加班斗加=l+/6+66H+/C即可得出答案.
【解答】解:根据题意,将周长为8腐的△/欧沿8c向右平移得到△西;
:.AD^\cm,BF=BC+CF=BC+\cm,DF=AC;
又〈AB+册AC=8cm,
:.四边形ABFD的周长班册如'=1+粉鸵4+/「=10M.
故答案为:10.
【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段
平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,外'=/,是解题的关键.
9.(2018秋•杨浦区校级期末)如图,如果四边形3旋转后能与正方形4?必重合,那么此图所在的平面上
可以作为旋转中心的点共有个.
DE
BCF
【分析】分别以C〃缪的中点为旋转中心进行旋转,都可以使正方形皿旋转后能与正方形ABCD重
合.
【解答】解:以。为旋转中心,把正方形W逆时针旋转90°,可得到正方形ABCD-,
以,为旋转中心,把正方形CW顺时针旋转90°,可得到正方形ABCD-
以。的中点为旋转中心,把正方形CDEF旋转180°,可得到正方形ABCD.
故此图所在的平面上可以作为旋转中心的顶点共有3个.
故答案为:3.
【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋
转角,对应点到旋转中心的距离相等.
10.(2020秋•徐汇区校级月考)如图,镜子中号码的实际号码是3265.
多"己己5E乡
【分析】注意镜面反射与特点与实际问题的结合.
【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.
故答案为:3265
【点评】本题考查了图形的对称变换,学生在解题时可以再借用镜子看一下即可,也可以在卷子的反面
看.
11.(2018秋•嘉定区期末)如凰将三角形46c沿直线正平移得到三角形磔其中点A与点,是对应点,
点8与点£是对应点,点C与点厂是对应点.如果BC=5,EC=2,那么线段/一的长是3.
【分析】首先根据平移的性质得到BE=CF=5-2,然后根据龙的长求得的长即可.
【解答】解:根据平移的性质可得:BE=CF=BC-FC=5-2=3,
:.AABE=3,
故答案为:3
【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段
平行且相等,对应线段平行且相等,对应角相等.
12.(2019秋•浦东新区期末)已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所
示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为2秒,两个正方
形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为1或6秒.
【分析】先求出重叠部分长方形的宽,再分重叠部分在大正方形的左边和右边两种情况讨论求解.
【解答】解:当S=2时,重叠部分长方形的宽=2+2=1谶,
重叠部分在大正方形的左边时,2=1+1=1秒,
重叠部分在大正方形的右边时,力=(5+2-1)+1=6秒,
综上所述,小正方形平移的时间为1或6秒.
故答案为:1或6.
【点评】本题考查了平移的性质,主要利用了长方形的面积,难点在于分两种情况解答.
三.解答题(共5小题)
13.(2018秋•浦东新区期末)如图,在四边形/6切中,
(1)画出四边形481G4使四边形4Aqz与四边形相切关于直线施成轴对称;
(2)画出四边形4国C0,使四边形4民C0与四边形A8CD关于点。中心对称;
(3)四边形4氏4"与四边形4民G坊是否对称,若对称请在图中画出对称轴或对称中心.
【分析】(1)根据网格结构找出点4B、C,,关于直线m的对称点4、B、、4、4的位置,然后顺次连
接即可;
(2)根据网格结构找出点从B、C、,关于点。的对称点4、氏、G、功的位置,然后顺次连接即可;
(3)观察图形,根据轴对称的性质解答.
【解答】解:(1)四边形4AG"如图所示;
⑵四边形如图所示;
(3)如图所示,四边形48解"与四边形AMD,关于直线20成轴对称.
【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位
置是解题的关键.
14.(2019秋•奉贤区期末)如图,
(1)请画出△/回关于直线"V的对称图形△4AG.
(2)如果点4是点/关于某点成中心对称,请标出这个对称中心4并画出△49C关于点。成中心对称的
⑵找到幽2的中点即为。点位置,再利用中心对称图形的性质得出对应点坐标连接即可.
【解答】解:(1)如图所示:画出△/反;关于直线蛇的对称图形
⑵如图所示:找出对称中心“画出△/8C关于点。成中心对称的图形尼G.
【点评】此题主要考查了图形的轴对称变换以及中心对称变换;得到关键点的位置是解决本题的关键;
用到的知识点为:轴对称变换图形中,对应点的连线被对称轴垂直平分以及中心对称图形的性质:对应
点的连线都经过对称中心,并且被对称中心平分.
15.(2018秋•宝山区期末)如图①、②均为7X6的正方形网格,点/、B、。在格点上.
(1)在图①中确定格点〃并画出以4B、a,为顶点的四边形,使其为轴对称图形(画一个即可).
(2)在图②中确定格点七并画出以从B、C、£为顶点的四边形,使其为中心对称图形.(画一个即可)
【分析】(1)根据轴对称的性质画出图形即可;
(2)根据中心对称的性质画出图形即可.
【解答】解:(D如图①所示;
(2)如图②所示;
图②
【点评】本题考查的是利用旋转设计图案,熟知图形旋转不变性的性质是解答此题的关键.
16.(2019秋•浦东新区期末)如图是由边长为1的小正方形组成的8X4网格,每个小正方形的顶点叫做格
点,点A,B,C,。均在格点上,在网格中将点,按下列步骤移动:
第一步:点〃绕点/顺时针旋转180。得到点以;
第二步:点4绕点6顺时针旋转90°得到点坊;
第三步:点打绕点C顺时针旋转90°回到点〃
(1)请用圆规画出点经过的路径;
(2)所画图形是轴对称对称图形;
(3)求所画图形的周长(结果保留口).
AD
I—I—I-1-—-
IIIII
rTTT_|_-
IIIII
「一「一「-I_-
IIIII
「一「.「T.
jIII.
B'
【分析】(1)利用旋转变换的性质画出图象即可;
(2)根据轴对称图形的定义即可判断;
(3)利用弧长公式计算即可;
【解答】解:(1)点八"一功一〃经过的路径如图所示:
DAD
nT-
I1IIh
r\r-r-|-Y
IKIIt
r丁<
B%
(2)观察图象可知图象是轴对称图形,
故答案为轴对称.
(3)周长=4X%H鱼=8".
180
【点评】本题考查作图-旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图
形,属于中考常考题型.
17.(2020秋•徐汇区校级月考)请认真观察图⑴的4个图中阴影部分构成的图案,回答下列问题:
⑴请写出这四个图案都具有的两个共同特征:特征1:是轴对称图形;特征2:是中心对称图
形.
(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).
【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;
(2)应画出既是中心对称图形,又是轴对称图形,且面积为4的图形.
【解答】解:(1)特征1:是轴对称图形,特征2:是中心对称图形;
(2)图(2)
【点评】图形的特点应从对称性和面积等方面进行考虑.
【易错】
选择题(共5小题)
1.(2020秋•浦东新区期末)下列四个汉字是轴对称图形的是()
A中B国C加D油
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
【解答】解:/、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
不是轴对称图形,故本选项不符合题意;
久不是轴对称图形,故本选项不符合题意.
故选:4
【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.(2020秋•徐汇区校级月考)下列图形中既是中心对称图形又是轴对称图形的是()
【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋
转180。,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形
沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是中心对称图形又是轴对称图形,故本选项符合题意;
C.是轴对称图形,不是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分
折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3.(2021秋•徐汇区月考)下列图案中,是中心对称图形,但不是轴对称图形的是()
【分析】根据轴对称图形与中心对称图形的概念判断.
【解答】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
C.是中心对称图形,但不是轴对称图形,本选项符合题意;
D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
故选:C.
【点评】本题考查的是中心对称图形和轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部
分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4.(2020秋•嘉定区期末)下列说法中正确的是()
A.如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形
B.如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形
C.如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形
D.如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形
【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就
叫做旋转对称图形.
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做
对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.
把一个图形绕某一点旋转180。,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对
称图形,这个点叫做对称中心.
【解答】解:A,如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,如平行四边形是旋
转对称图形,但不是轴对称图形,故本选项不合题意;
6、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,
但不是轴对称图形,故本选项不合题意;
a如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,说法正确,故本选项符合题意;
A如果一个图形是旋转对称图形,那么这个图形不一定是中心对称图形,如三角形是旋转对称图形,但
不是中心对称图形,故本选项不合题意;
故选:C.
【点评】本题主要考查了轴对称图形,中心对称图形以及旋转对称图形,熟记相关定义是解答本题的关
键.
5.(2020秋•虹口区期末)下列说法正确的是()
A.能够互相重合的两个图形成轴对称
B.图形的平移运动由移动的方向决定
C.如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形
D.如果一个旋转对称图形有一个旋转角为180。,那么它是中心对称图形.
【分析】根据轴对称的定义:如果把一个图形沿一条直线对折,能与另一个图形完全重合,那么我们说
这两个图形成轴对称,即可选出答案.
【解答】解:A.能够互相重合的两个图形不一定成轴对称,故本选项不合题意;
B.平移由移动的方向和距离所决定,故本选项不合题意;
C如果一个旋转对称图形有一个旋转角为120。,那么它是中心对称图形,正六边形是旋转对称图形,旋
转角可以是120。,但它是中心对称图形,故本选项不合题意;
D.如果一个旋转对称图形有一个旋转角为180。,那么它是中心对称图形,正确,故本选项符合题意;
故选:D.
【点评】本题考查轴对称图形以及中心对称的定义,属于基础题,注意掌握把一个图形绕着某个点旋转
180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.
二.填空题(共3小题)
6.(2020秋•嘉定区期末)在线段、角、长方形、圆这四个图形中,是轴对称图形但不是中心对称图形的是
角.
【分析】结合线段、角、长方形、圆的性质并根据轴对称图形和中心对称图形的概念即可解答.
【解答】解:在线段、角、长方形、圆中,是轴对称图形但不是中心对称图形的是角.
故答案为:角.
【点评】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分
折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.
7.(2020秋•松江区期末)如图,在2X2的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称
为格点三角形.图中的△/6C为格点三角形,在图中最多能画出」个不同的格点三角形与△/6C成轴
对称.
【分析】根据轴对称图形的概念,画出图形即可.
【解答】解:与△/阿成轴对称的格点三角形如图所示,
H
在图中最多能画出5个不同的格点三角形与△/阿成轴对称.
最后一个图的三角形物。和三角形/物都与三角形/8C成轴对称,
故答案为:5.
【点评】本题考查作图-轴对称变换,考查学生的动手能力,解题的关键是理解轴对称图形的概念,本题
主要属于基础题.
8.(2020秋•浦东新区期末)如图,在3X3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正
方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有」种.
【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这
个图形叫做轴对称图形.
【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,
选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处.
故答案为:5.
【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键
是寻找对称轴,图形两部分折叠后可重合.
三.解答题(共1小题)
9.(2021秋•普陀区期末)如图,已知四边形和直线就
(1)画出四边形AMD,,使四边形48c4与四边形48切关于直线卧成轴对称;
⑵画出四边形4民C2使四边形4民G2与四边形相切关于点。成中心对称;
(3)四边形AiBiCi仄与四边形AMD,的位置关系是关于直线3成轴对称.
【分析】⑴根据轴对称的性质即可画出四边形4AG4,使四边形4Aq"与四边形被勿关于直线MN成
轴对称;
⑵根据中心对称性质即可画出四边形4尺C4,使四边形A131cl必与四边形ABCD关于点。成中心对称;
(3)结合以上画图即可得四边形与四边形AMD,的位置关系是关于直线CO成轴对称.
【解答】解:(1)如图,486〃即为所求;
N
⑵如图,4尼C0即为所求;
(3)关于直线而成轴对称.
故答案为:关于直线成轴对称.
【点评】本题考查了作图-旋转变换,作图-轴对称变换,解决本题的关键是掌握旋转和轴对称的性
质.
【压轴】
一、单选题
1.(2022•上海•七年级单元测试)如图所示,正方形ABCD的边长为a,正方形ABCD的面积记作》,取各边
中点,顺次连接得到的正方形面积记作S。,以此类推,则醺可用含a的代数式表示为()
AB
[212
C.D.石〃
2728
【答案】C
【分析】根据折叠的性质求得S1、s2的面积,观察规律,即可求解.
【详解】解:由题意可知:正方形5的面积
由题意可得:E、F、G、H分别为各边的中点,
将正方形沿EG、"F进行折叠,可得AD与BC重合,42与8重合,
可以得到治DHG=S4HGO、S4HAE~S/\HEO、S/\GFC~S4G0F、,△BEF=SAOEF
又:R=S/\DHG+HGO+^AH4£+S&HEO+^AGFC+^AGOF+^/SBEF+^AOEF
=
邑SAHGO+S^HEO+S&GOF+^AOEF
S?=—-S.=—a2
2212
同理可得S3=gSz=12
〒,一
一12
故选C
【点睛】此题考查了图形类规律的探索问题,解题的关键是求出前面图形的面积,得出规律.
二、解答题
2.(2021•上海•七年级专题练习)在AABC中,NC=90°,NBAC=60°,AABC绕点C顺时针旋转,旋转角为
a(0°<a<180°),点A、B的对应点分别是点D、E.
⑴如图1,当点D恰好落在边AB上时,试判断DE与AC的位置关系,并说明理由.
⑵如图2,当点B、D、E三点恰好在一直线上时,旋转角a=。,此时直线CE与AB的位置关系是.
⑶在⑵的条件下,联结AE,设ABDC的面积S1,AAEC的面积S2,则S1与s的数量关系是.
(4)如图3,当点B、D、E三点不在一直线上时,(3)中的8与S?的数量关系仍然成立吗?试说明理由.
【答案】(DDE#AC(2)120°,EC±AB;(3)S1=S2;(4)S1=S2仍然成立
【分析】(1)由旋转的性质可得/EDC=/BAC,DC=AC结合NBAC=60°,可得4ADC是等边三角形,从而可得
ZDCA=ZEDC=60°,由止匕可得DE〃AC;
⑵如图2,在4ABC中,由NC=90°,ZBAC=60°可得NABC=30°,延长EC交AB于点F,由旋转的性质可得
CE=BE,NE=/ABC=30°,结合B、D、E的三点在同一直线上可得/CBE=/E=30°,从而可得旋转角
/BCE=120°,结合/BCE=/ABC+/BFC,/ABC=30°,可得/BFC=90°,从而可得EC_LAB;
(3)如图2,过点D作DH±BC于点H,由NDCF=NACB=90°易得NACF=NDCH,结合NAFC=NDHC=90°,AC=DC
可得4ACF丝Z\DCH,从而可得AF=DH,结合BC=EC即可得到Si=S2;
(4)如图3,过D作DH_LBC于H,过A作AGXEC交EC的延长线于G,与⑶同理可得△AGCZZXDHC,从而可得
AG=HD,结合EC=BC即可得到SFSZ仍然成立.
【详解】(1)DE#AC.理由:
AABC旋转后与4DCE全等,
ZA=ZCDE,AC=DC.
VZBAC=60°,AC=DC,
ADAC是等边三角形.
/.ZDCA=60°.
又;NCDE=NBAC=60°,
.\ZDCA=ZCDE=60°,
ADE/ZAC.
(2)120°;EC_LAB,理由如下:
如图2,延长EC交AB于点F,
•.•在aABC中,由/C=90°,ZBAC=60°,
ZABC=30°,
由旋转的性质可得:CE=BE,ZE=ZABC=30°,
VB>D、E的三点在同一直线上,
ZCBE=ZE=30°,
.••旋转角NBCE=120°,
又:/BCE=/ABC+/BFC,/ABC=30°,
ZBFC=120°-30°=90°,
AEC±AB于点F;
(3)SI=S2,理由如下:
如图2,连接AE,过点D作DH±BC于点H,
ZAFC=ZDHC=90°,
VZACB=ZDCE=90°,
ZACF=ZDCH,
又;AC=DC,
AACF^ADCH,
.\AF=DH,
又:EC=BC,
1-CE•AF=|BC•DH,即Si=S?;
(4)SFSZ仍然成立,理由如下:
如图3所示:过D作DH±BC于H,过A作AG±EC交EC的延长线于G.
B
VDH±BC,AG±EC,
ZAGC=ZDHC=90°
,?AABC旋转后与ADCE全等
/.ZACB=ZDCE=90°,AC=DC,BC=CE.
VZACE+ZBCD=180°,ZGCA+ZECA=180°,
ZACG=ZDCH,
又:ZAGC=ZDHC,AC=DC,
/.AAGC^ADHC,
.\AG=DH,
《EOAF=;CB・DG,即Si=S?.
【点睛】(1)解第3小题的关键是作出如图所示的辅助线,构造出4ACF会△口:,从而可得AF=DH,这样结合
EC=BC即可证得SE了;(2)解第4小题的关键是通过作出如图所示的辅助线,即可把图形转化成和第3小
题相似的结构,这样即可参照第3小题的解题思路来解决本题了.
3.(2022•上海•七年级期末)如图,正方形A3CD,点/是线段CB延长线一点,连结AM,AB=a,AM=b
(1)将线段AM沿着射线运动,使得点A与点。重合,用代数式表示线段AM扫过的平面部分的面积.
(2)将三角形ABM绕着点A旋转,使得AB与AD重合,点M落在点N,用代数式表示线段AM扫过的平面部
分的面积.
(3)将三角形曲顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),
请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角
13
【答案】⑴/;⑵;92或:蜘2;⑶见解析
44
【分析】(1)根据平移的性质和平行四边形的面积计算即可;
(2)根据扇形的面积计算即可;
(3)根据旋转的性质画出图形得出旋转中心和角度即可.
【详解】解:WAD»DC=a2
答:线段AM扫过的平面部分的面积为/
(2)三角形ABM绕着点A旋转,使得A3与AD重合,则三角形ABM旋转的角度是90°或270°
._90x7rb~成0_270°xTib2
,•3扇形AWV=一记]一以'3扇形AMN=同了
sm^AMN=;而或_|6
13
答:扇形AM2V的面积为一万62或—Trb?
44
⑶如图1,旋转中心:A3边的中点为0,顺时针180
如图2,旋转中心:点B,顺时针旋转90
如图3,旋转中心:正方形对角线交点0,顺时针旋转90
【点睛】本题考查了旋转的性质,关键是根据旋转前
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中药房考试试题及答案
- 医药电商平台运营模式创新与合规监管政策研究与实践
- 2025年工业互联网平台网络安全隔离技术在智能制造中的应用
- 树木毁坏协议书
- 校企合同协议书
- 校园大使协议书
- 样品处置协议书
- 桃中秘密协议书
- 桉树砍草协议书
- 桥架安全协议书
- 2025榆能煤炭进出口公司神木饭店招聘300人笔试历年参考题库附带答案详解
- 防沙治沙项目合同协议书
- 泰国餐厅装修设计
- 2025年保密教育线上培训考试试题库及答案(共19套)
- 四川绵阳科技城控股集团有限公司招聘笔试真题2024
- 印刷服务方案投标文件(技术方案)
- 2025年甘肃省高考政治试题(含答案)
- 2025年随州国有资本投资运营集团有限公司招聘笔试参考题库含答案解析
- 中医护理常用腧穴课件
- 职业卫生考试题库及答案模拟题
- 建筑工程质量策划方案编制指导手册 2025
评论
0/150
提交评论