上海外国语大秀洲外国语校2021-2022学年中考五模数学试题含解析_第1页
上海外国语大秀洲外国语校2021-2022学年中考五模数学试题含解析_第2页
上海外国语大秀洲外国语校2021-2022学年中考五模数学试题含解析_第3页
上海外国语大秀洲外国语校2021-2022学年中考五模数学试题含解析_第4页
上海外国语大秀洲外国语校2021-2022学年中考五模数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海外国语大秀洲外国语校2021-2022学年中考五模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知关于x的不等式组至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有()A.4个 B.5个 C.6个 D.7个2.下列计算正确的是()A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab33.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A. B. C. D.4.cos60°的值等于()A.1 B. C. D.5.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B.1 C. D.6.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为()A.﹣2 B.﹣1 C.1 D.27.边长相等的正三角形和正六边形的面积之比为()A.1∶3 B.2∶3 C.1∶6 D.1∶8.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()A.①③ B.②③ C.③④ D.②④9.已知a,b为两个连续的整数,且a<<b,则a+b的值为()A.7 B.8 C.9 D.1010.已知a为整数,且<a<,则a等于A.1 B.2 C.3 D.411.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断12.观察下列图案,是轴对称而不是中心对称的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a+b=3,ab=2,则a2+b2=_____.14.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.15.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.16.不等式组的解集为____.17.圆锥的底面半径为4cm,高为5cm,则它的表面积为______cm1.18.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.20.(6分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)21.(6分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示.(1)图中的线段l1是(填“甲”或“乙”)的函数图象,C地在B地的正北方向千米处;(2)谁先到达C地?并求出甲乙两人到达C地的时间差;(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度.22.(8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:2≈1.41423.(8分)2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有人;在被调查者中参加“3科”课外辅导的有人.(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.24.(10分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)25.(10分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.26.(12分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.27.(12分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1图2图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线.易证△AFG,故EF,BE,DF之间的数量关系为;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°.若BD=1,EC=2,则DE的长为.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】

依据不等式组至少有两个整数解,即可得到a>5,再根据存在以3,a,7为边的三角形,可得4<a<10,进而得出a的取值范围是5<a<10,即可得到a的整数解有4个.【详解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7为边的三角形,∴4<a<10,∴a的取值范围是5<a<10,∴a的整数解有4个,故选:A.【点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.3、A【解析】

作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.4、A【解析】

根据特殊角的三角函数值直接得出结果.【详解】解:cos60°=故选A.【点睛】识记特殊角的三角函数值是解题的关键.5、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、C【解析】

根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.【详解】∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),∴设旋转后的函数解析式为y=﹣x﹣1,在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,即一次函数y=﹣x+2与x轴交点为(4,1).一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).∴m==1,故选:C.【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.7、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.连接OA、OB,过O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1,∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.8、D【解析】

①错误.由题意a>1.b>1,c<1,abc<1;

②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;

③错误.抛物线与x轴的另一个交点是(1,1);

④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a>1,

∵抛物线交y轴于负半轴,∴c<1,

∵对称轴在y轴左边,∴-<1,

∴b>1,

∴abc<1,故①错误.

∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,

当ax2+bx+c<mx+n时,-3<x<-1;

即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,

抛物线与x轴的另一个交点是(1,1),故③错误,

∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,

∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.

故选:D.【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.9、A【解析】∵9<11<16,∴,即,∵a,b为两个连续的整数,且,∴a=3,b=4,∴a+b=7,故选A.10、B【解析】

直接利用,接近的整数是1,进而得出答案.【详解】∵a为整数,且<a<,∴a=1.故选:.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.11、B【解析】

比较OP与半径的大小即可判断.【详解】,,,点P在外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.12、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意.故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】

根据a2+b2=(a+b)2-2ab,代入计算即可.【详解】∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=1.故答案为:1.【点睛】本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.14、【解析】

先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为:.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.15、【解析】

由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.【详解】∵六边形ABCDEF是正六边形,

∴∠AOB=60°,

∴△OAB是等边三角形,OA=OB=AB=2,

设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

∴∴S阴影=S△OAB-S扇形OMN=故答案为【点睛】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.16、x>1【解析】

分别解出两不等式的解集再求其公共解.【详解】由①得:x>1

由②得:x>∴不等式组的解集是x>1.【点睛】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.17、【解析】

利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1.【详解】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm1;由勾股定理得,母线长=,圆锥的侧面面积,∴它的表面积=(16π+4)cm1=cm1,故答案为:.【点睛】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.18、-4.【解析】

过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)详见解析;(2)(,1).【解析】

(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.【详解】(1)∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).【点睛】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.20、(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答21、(1)乙;3;(2)甲先到达,到达目的地的时间差为小时;(3)速度慢的人提速后的速度为千米/小时.【解析】分析:(1)根据题意结合所给函数图象进行判断即可;(2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达C地的时间并进行比较、判断即可得到本问答案;(3)根据图象中的信息结合(2)中的结论进行解答即可.详解:(1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处.(2)甲先到达.设甲的函数解析式为s=kt,则有4=t,∴s=4t.∴当s=6时,t=.设乙的函数解析式为s=nt+3,则有4=n+3,即n=1.∴乙的函数解析式为s=t+3.∴当s=6时,t=3.∴甲、乙到达目的地的时间差为:(小时).(3)设提速后乙的速度为v千米/小时,∵相遇处距离A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原来相遇后乙行2小时才到达C地,∴乙提速后2千米应用时1.5小时.即,解得:,答:速度慢的人提速后的速度为千米/小时.点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.22、(1)173;(2)点C位于点A的南偏东75°方向.【解析】试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.试题解析:解:(1)如答图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.考点:1.解直角三角形的应用(方向角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.勾股定理和逆定理.23、(1)50,10;(2)见解析.(3)16.8万【解析】

(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24×=16.8(万).【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%=5(人),补全的条形统计图如右图所示;(3)24×=16.8(万),答:参与辅导科目不多于2科的学生大约有16.8人.【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.24、调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析:Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.试题解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.25、证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论