版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版四4年级下册数学期末解答综合复习题(及答案)
1.淘气和笑笑比赛折幸运星。淘气6分钟折了5个幸运星,笑笑9分钟折了7个幸运
星,谁折得更快?
2.学校美术展览中,有80幅水彩画,120幅蜡笔画,水彩画比蜡笔画少几分之几?
3.一根15米长的绳子,用去5米。余下的是这根绳子的几分之几?
4.修一条长240米的公路,修了3天后,还剩下60米没有修。已经修了全长的几分之
几?
5.8月份暑假期间,鹏鹏和甜甜去敬老院当志愿者照顾老人,他们去敬老院的日期各自有
规律,(如下表。表示他们去的日子),两人下次相遇是几月几号?(写出必要的过程)
鹏朋g(S)2号3号4号豆6号7号S号(S)
甜甜(2)2号3号<3)AD6号S号吟
6.人民广场车站是2路车和7路车的起点站,从早上6:00同时各发出第一辆车后,2路
车每12分钟发一辆车,7路车每15分钟发一辆车。
(1)经过多长时间后两路车又同时发车?发车时间是几点钟?
(2)从早上6:00发第一辆车,到晚上8:00发最后一辆车,两路车同时发出的共有多
少辆车?
7.五(2)班学雷锋小组给行动困难老人搞卫生,每4天到李爷爷家,每6天到刘爷爷
家。今年6月1日同学们同一天到这两位老人搞了卫生,下一次同一天到两位老人家搞卫
生的是几月几日?
8.李奶奶过生日时买来了70多个苹果。如果每盘装4个,正好装完;如果每盘装6个,
也正好装完。
7
9.在〃清理白色垃圾,倡导低碳生活〃的活动中,五(1)班同学清理塑料垃圾二千克,五
2
(2)班同学比五(1)班多清理]千克。五(1)班和五(2)班同学一共清理塑料垃圾多
少千克?
io.工程队铺一条77千米长的公路,第一天修了3:千米,第二天比第一天多修了1二千米。
686
两天一共修了多少千米?
/米小产2千米
H.——上一/Q
体育馆学校少年宫
(1)从体育馆到少年宫一共有多少千米?
(2)小军从家经学校到体育馆要走1千米,他家到学校有多远?
12.一杯牛奶,喝了如果再喝JL,正好喝了这杯牛奶的一半。这杯牛奶一共有多少
5/
L?
13.小军为奶奶选了一份生日礼物(如下图)。
15cm
(1)礼品盒的体积是()立方厘米。
(2)如果用彩纸包装,至少需要多少平方厘米彩纸?
(3)用彩带捆扎,至少需要多长的彩带?(打结处用了30厘米)
14.为了引水灌溉,张坪村修建了一个长80米的水槽,水槽的横截面是一个边长8分米
的正方形。
(1)如果要在水槽内壁的底面和侧面抹上水泥,抹水泥的面积是多少平方米?
(2)引水灌溉时,如果水槽内的水深6分米,水流速度是25米/分,这个水槽1小时可以
引水多少立方米?
15.一个花坛(如图),高0.7米,底面是边长1.2米的正方形,四周用砖砌成,厚度是
0.2米,中间填满泥土。
(1)这个花坛占地多少平方米?
(2)用泥土填满这个花坛,大约需要泥土多少立方米?
(3)做这样一个花坛,四周大约需要砖多少平方米?
16.用铁丝做一个长方体框架,如图(单位:分米),把它的五个面糊上纸(下面为
空),做成一个孔明灯。
13
(1)至少需要多少平方分米纸(忽略接缝处)?
(2)这个孔明灯的容积是多少立方分米?
17.把一个棱长6分米的正方体钢锭熔铸成一个长方体钢锭,这个长方体长9分米,宽4
分米,求这个长方体钢锭高多少分米?
18.一个密封的长方体玻璃容器(玻璃厚度不计),长4分米、宽3分米、高8分米,里
面水深5分米(如图1),现在以这个容器的右侧面为底,侧放在桌面上(如图2)。
图1图2
(1)这时水深多少分米?
(2)容器(如图2)没有与水接触部分的面积是多少?
19.一个棱长8dm的正方体铁块,把它熔铸成一个长4dm,宽5dm的长方体,这个长方
体的高是多少分米?
20.如图,一块长方形铁皮长30厘米,宽20厘米,如果在这块铁皮的四个角都剪下一个
边长5厘米的正方形,焊接成一个无盖长方体铁盒(忽略铁皮厚度),将铁盒装满水。
20cm
30cm
(1)水的体积是多少立方厘米?
(2)如果将盒子里的水倒一部分到下面这个容器中,使铁盒中的水面和这个容器中的水面
同样高,这个容器中的水高多少厘米?
\~!।10cm
5cm
10cm
21.在下面方格纸上按要求画图。
(1)以虚线为对称轴,画出轴对称图形的另一半。
(2)画出把整个图形向右平移5格后的图形。
(1)图形①通过()和()两种运动方式可以到图形②的位置。
(2)请按照你第(1)题的想法,画出图形①经过第一种运动方式后得到的图形③。
(1)图中三角形ABC的面积是()平方厘米,三角形ABC个顶点的位置分别是A
()、B()、C()o
(2)把三角形ABC向左平移3格后的图形。
24.想一想,画一画。
①在表中先画出A(3,5)、B(6,0)、C(2,1)三个点,再用线把这三个点连接成一
个三角形。
②将得到的三角形向右平移5格,画出这个新三角形AiBiCio
③新三角形AiBiCi的三个顶点用数对表示,Ai点是(),Bi点是(),Ci点是
()«
25.如下图,有一个长方体容器,其中一个侧面有一个边长3cm的正方形开口,往容器里
放了一些水,然后将容器倒过来摆放,水会减少704cm3。这个容器最初放了多少立方厘米
的水?(容器厚度不计)
26.下图是小红用长方体容器做的实验,从里面量这个容器长10cm,宽8cm,她向这个容
器里倒了一些水,正好出现左右两个正方形的面(如图①)。小红又将一个土豆放入水
中,恰好出现了前后两个面是正方形(如图②),请你计算出该土豆的体积是多少立方厘
图①图②
27.下面两个统计图,反映的是甲、乙两位同学在期间数学自测成绩和居家学习时间的分
配情况。
自测成绩统计图学习时间分配统计图
看图回答以下问题:
(1)从折线统计图看出()的成绩提高得快。从条形统计图看出()的反思时间少一
止匕
-O
(2)甲、乙反思的时间分别占他们学习总时间的丫、丫。
(3)你喜欢谁的学习方式?为什么?
28.下图是汽车和火车的行程示意图,根据图中信息解答下面的问题。
(1)汽车比火车早到几分钟?
(2)汽车的速度是每分钟多少千米?
(3)火车中途停留了多长时间?
(4)除去停留时间,火车行完全程的平均速度是每分钟多少千米?
1.淘气
【分析】
每分钟折的个数=折的总个数+分数数,据此分别求出淘气和笑笑每分钟折的个数,比较即
可。
【详解】
淘气:(个),
笑笑:(个),
因为,所以淘气折得更快。
答:淘气折得更快。
【点睛】
解析:淘气
【分析】
每分钟折的个数=折的总个数十分数数,据此分别求出淘气和笑笑每分钟折的个数,比较即
可。
【详解】
5545
淘气:5fd(个),/五
7742
笑笑:7-9=-(个),
954
因为三>言,所以淘气折得更快。
答:淘气折得更快。
【点睛】
此题考查了分数与除法的关系以及异分母分数的大小比较,被除数相当于分子,除数相当
于分母,认真解答即可。
2.【分析】
先求出蜡笔画比水彩画多多少,再用多的数量除以蜡笔画的数量,即可解答。
【详解】
(120-80)4-120
=404-120
答:水彩画比蜡笔画少。
【点睛】
本题考查求一个数比另一个数
解析:g
【分析】
先求出蜡笔画比水彩画多多少,再用多的数量除以蜡笔画的数量,即可解答。
【详解】
(120-80)+120
=40^120
~3
答:水彩画比蜡笔画少g。
【点睛】
本题考查求一个数比另一个数的少几分之几。
3.【分析】
先用减法求出余下部分的长度,再根据求一个数是另一个数的几分之几用除法
计算。
【详解】
(15-5)4-15
=104-15
答:余下的是这根绳子的。
【点睛】
此题考查的是分数除法的意义
解析:|
【分析】
先用减法求出余下部分的长度,再根据求一个数是另一个数的几分之几用除法计算。
【详解】
(15-5)+15
=10^15
_2
—3
答:余下的是这根绳子的]。
【点睛】
此题考查的是分数除法的意义,掌握求一个数是另一个数的几分之几用除法计算是解题关
键。
4.【分析】
要修240米,还有60米没修,就是修了240—60=180米,根据分数的意义,
用已修的除以全长即得修好的占全长的几分之几。
【详解】
(240—60)4-240
=180+240
答:
解析:
4
【分析】
要修240米,还有60米没修,就是修了240—60=180米,根据分数的意义,用已修的除
以全长即得修好的占全长的几分之几。
【详解】
(240-60)4-240
1804-240
=3
~4
3
答:已经修了全长的三
【点睛】
求一个数是另一个数的几分之几,用除法。
5.8月13日
【分析】
根据题意可知,鹏鹏每4天去一次敬老院,甜甜每3天去一次敬老院;求两人
下次去敬老院的时间,就是求出3和4的最小公倍数,从第一次去的时间加上
最小公倍数,即可解答。
【详解】
根据分
解析:8月13日
【分析】
根据题意可知,鹏鹏每4天去一次敬老院,甜甜每3天去一次敬老院;求两人下次去敬老
院的时间,就是求出3和4的最小公倍数,从第一次去的时间加上最小公倍数,即可解
答。
【详解】
根据分析可知,鹏鹏是4天去一次敬老院;甜甜3天去一次敬老院,3和4是相邻的两个
数,它们的最小公倍数是两个数的乘积,即:3x4=12
12+1=13(日)
两人下次相遇是8月13日。
答:两人下次相遇是8月13日。
【点睛】
本题考查最小公倍数的求法,互质的两个数的最小公倍数是两个数的乘积。
6.(1)60分钟;7:00
(2)15辆
【分析】
(1)求出两路车发车间隔时间的最小公倍数,就是同时发车的间隔时间,用起
点时间+间隔时间=下一次同时发车时间。
(2)根据终点时间一起点时间=经过时间
解析:(1)60分钟;7:00
(2)15辆
【分析】
(1)求出两路车发车间隔时间的最小公倍数,就是同时发车的间隔时间,用起点时间+间
隔时间=下一次同时发车时间。
(2)根据终点时间一起点时间=经过时间,求出运营时间,用运营时间+同时发车的间隔
时间+1即可。
【详解】
(1)12=2x2x3
15=3x5
2x2x3x5=60(分钟)
6:00+60分钟=7:00
答:经过60分钟后两路车又同时发车,发车时间是7:00o
(2)晚上8:00—早上6:00=14小时
60分钟=1小时
144-1+1
=14+1
=15(辆)
答:两路车同时发出的共有15辆车。
【点睛】
全部公有的质因数和各自独立的质因数,它们连乘的积就是这几个数的最小公倍数。
7.6月13日
【分析】
求下一次到两位老人家搞卫生,是几月几日,先求出下次搞卫生的所需天数,
即6和4的最小公倍数,再加上1,就是下次搞卫生的天数,再根据天数,确
定月份,即可解答。
【详解】
4=2x2
解析:6月13日
【分析】
求下一次到两位老人家搞卫生,是几月几日,先求出下次搞卫生的所需天数,即6和4的
最小公倍数,再加上1,就是下次搞卫生的天数,再根据天数,确定月份,即可解答。
【详解】
4=2x2
6=2x3
4和6的最小公倍数是:2x2x3=12
12+1=13(日)
下一次同一天到两位老人家搞卫生的是6月13日。
答:下一次同一天到两位老人家搞卫生是6月13日。
【点睛】
本题考查用最小公倍数求实际问题,根据最小公倍数的求法,进行解答。
8.72个
【分析】
根据题意可知,苹果的个数应该是4和6的公倍数,据此先求出4和6的最小
公倍数,进而求得最小公倍数的倍数(此数必须是大于70并且小于80的数)
【详解】
4和6的最小公倍数是12,
因
解析:72个
【分析】
根据题意可知,苹果的个数应该是4和6的公倍数,据此先求出4和6的最小公倍数,进
而求得最小公倍数的倍数(此数必须是大于70并且小于80的数)
【详解】
4和6的最小公倍数是12,
因为12x6=72,72符合题意,
所以有72个苹果。
答:共买了72个苹果。
【点睛】
本题考查求两个数的公倍数再结合题意求出答案,明确题中苹果的个数的范围是解题的关
键。
9.3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清
理的,求出两个班一共清理的塑料垃圾。
【详解】
=(千克)
答:五(1)班和五(2)班同学一共清理塑料垃圾3千
解析:3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清理的,求出
两个班一共清理的塑料垃圾。
【详解】
727
工+彳+工=3(千克)
636
答:五(1)班和五(2)班同学一共清理塑料垃圾3千克。
【点睛】
本题考查了分数加法的应用,正确理解题意并列式即可。
10.千米
【分析】
第一天修了千米,第二天比第一天多修了千米,则第二天修了(十)米,再把
它和第一天修的长度相加即可解答。
【详解】
++
=(千米)
答:两天一共修了千米。
【点睛】
本题考查分
解析:£千米
【分析】
第一天修了9千米,第二天比第一天多修了2千米,则第二天修了(:+;)米,再把它和
O0o6
第一天修的长度相加即可解答。
【详解】
13+-1+3|
868
:=-9--1--4-1--9-
242424
22
~24
=—(千米)
12
答:两天一共修了《千米。
【点睛】
本题考查分数连加的应用。根据题目中的数量关系即可解答。
11.(1)千米;(2)千米
【分析】
(1)从体育馆到少年宫一共有多少千米,把两段路程加起来即可;
(2)用小军家到体育馆的路程减去体育馆到学校的路程,求出他家距学校的路
程。
【详解】
(1)(千米)
411
解析:(1)一千米;(2)—千米
205
【分析】
(1)从体育馆到少年宫一共有多少千米,把两段路程加起来即可;
(2)用小军家到体育馆的路程减去体育馆到学校的路程,求出他家距学校的路程。
【详解】
答:从体育馆到少年宫一共有4千米。
41
(2)1--=-(千米)
答:他家到学校有g千米。
【点睛】
本题考查分数加减法,解答本题的关键是掌握分数加减法的计算方法。
12.L
【分析】
先利用加法求出这杯牛奶一半的量,再乘2得到这杯牛奶一共的量即可。
【详解】
(+)x2
=x2
=(L)
答:这杯牛奶一共有L。
【点睛】
本题考查了分数乘法的应用,正确理解题意并列式
解析:|L
【分析】
先利用加法求出这杯牛奶一半的量,再乘2得到这杯牛奶一共的量即可。
【详解】
9
答:这杯牛奶一共有1L。
【点睛】
本题考查了分数乘法的应用,正确理解题意并列式是解题的关键。
13.(1)3000;
(2)1300平方厘米;
(3)140厘米
【分析】
(1)礼品盒的体积=长、宽X高;
(2)利用长方体的表面积计算公式:(长x宽+长x高+宽x高)x2,即可求
得;
(3)需要丝带
解析:(1)3000;
(2)1300平方厘米;
(3)140厘米
【分析】
(1)礼品盒的体积=长、宽XgJ;
(2)利用长方体的表面积计算公式:(长x宽+长x高+宽x高)x2,即可求得;
(3)需要丝带的长度=长、2+宽x2+高x4+打结处丝带的长度,据此解答。
【详解】
(1)20x15x10
=300x10
=3000(立方厘米)
(2)(20x15+15x10+20x10)x2
=(300+150+200)x2
=650x2
=1300(平方厘米)
答:至少需要1300平方厘米彩纸。
(3)20x2+15x2+10x4+30
=40+30+40+30
=140(厘米)
答:至少需要140厘米的彩带。
【点睛】
掌握长方体的体积和表面积计算公式是解答题目的关键。
14.(1)192平方米
(2)720立方米
【分析】
(1)通过题目可知,这个水槽的长是80米,宽是8分米,高是8分米,这个
水槽的前面和后面不需要水泥的,由于要往水槽里引水,在底面和侧面抹上水
泥,则求这
解析:(1)192平方米
(2)720立方米
【分析】
(1)通过题目可知,这个水槽的长是80米,宽是8分米,高是8分米,这个水槽的前面
和后面不需要水泥的,由于要往水槽里引水,在底面和侧面抹上水泥,则求这个水槽的3
个面的面积,即长X高X2+长X宽,把数代入公式即可求解。
(2)由于6分米=0.6米,1分钟能引水:0.6x0.8x25,则1小时的引水量,把1分钟引水
量乘60即可。
【详解】
(1)8分米=0.8米
80x0.8x2+80x0.8
=128+64
=192(平方米)
答:抹水泥的面积是192平方米。
(2)1小时=60分
0.6x0.8x25x60
=0.48x25x60
=12x60
=720(立方米)
答:这个水槽1小时可以引水720立方米
【点睛】
本题主要考查长方体的表面积和体积的公式,要注意这个水槽只有3个面是解题的关键。
15.(1)1.44平方米
(2)0.448立方米
(3)3.36平方米
【分析】
(1)由于底面是边长为L2米的正方形,则占地面积就是底面面积,即
1.2X1.2,算出结果即可。
(2)由于填满泥土,则
解析:(1)1.44平方米
(2)0.448立方米
(3)3.36平方米
【分析】
(1)由于底面是边长为1.2米的正方形,则占地面积就是底面面积,即1.2X1.2,算出结
果即可。
(2)由于填满泥土,则求这个花坛的容积即可,由于砖的厚度是0.2米,则内部的长:1.2
-02x2=0.8米,内部的宽:1.2—0.2x2=0.8米,内部的高:0.7米,根据长方体的体积公
式:长x宽x高,把数代入公式即可求解;
(3)在花坛的四周砌砖,则求花坛四周的表面积即可,由于底面是正方形,则四周的面积
大小相同,即用12x0.7x4,算出结果即可。
【详解】
(1)1.2x1.2=1.44(平方米)
答:这个花坛占地1.44平方米。
(2)(1.2—0.2x2)x(1.2-0.2x2)x0.7
=0.8x0,8x0.7
=0.64x0.7
=0.448(立方米)
答:大约需要泥土0.448立方米。
(3)12x0.7x4
=0.84x4
=3.36(平方米)
答:四周大约需要砖3.36平方米
【点睛】
求花坛的容积时,要用花坛的长和宽分别减去两个砖厚度求出内部长方体的长和宽;熟练
掌握长方体的表面积和体积公式。
16.(1)81平方分米
(2)54立方分米
【分析】
(1)下面为空,是求剩下5个面的总面积,根据长方体的表面积公式求解;
(2)求容积,根据容积(体积)公式:v=abh进行求解即可。
【详解】
(1)
解析:(1)81平方分米
(2)54立方分米
【分析】
(1)下面为空,是求剩下5个面的总面积,根据长方体的表面积公式求解;
(2)求容积,根据容积(体积)公式:v=abh进行求解即可。
【详解】
(1)3x3+(3x6+3x6)x2
=9+72
=81(平方分米)
答:做这个孔明灯至少需要81平方分米纸。
(2)3x3x6
=9x6
=54(立方分米)
答:这个孔明灯的容积是54立方分米。
【点睛】
本题考查长方体的表面积和体积的计算,关键是要牢记公式并理解它的表面积是哪几个面
的面积的总和。
17.6分米
【详解】
(6x6x6)+(9x4)=6(分米)
解析:6分米
【详解】
(6x6x6):(9x4)=6(分米)
18.(1)2.5分米
(2)57平方分米
【分析】
(1)由题意,长方体内水的体积为4x3x5=60(立方分米),现以这个容器的
右侧面为底,侧放在桌面上,这时是以8x3的面为底面,要求此时的水深,可
列式
解析:(1)2.5分米
(2)57平方分米
【分析】
(1)由题意,长方体内水的体积为4x3x5=60(立方分米),现以这个容器的右侧面为
底,侧放在桌面上,这时是以8x3的面为底面,要求此时的水深,可列式为:4x3x54-(3
>8)=2.5(分米);
(2)观察图2,此时没有与水接触的部分的面积可看作是一个无盖的长方体的表面积,其
中长、宽、高分别为8、3、(4-2.5);利用这些数据,结合长方体表面积公式,可求得
没有与水接触部分的面积是多少。
【详解】
(1)4x3x5-?(3x8)
=60+24
=2.5(分米)
答:这是水深2.5分米。
(2)4—2.5=1.5(分米)
8x3+(3xl.5+8xl.5)x2
=24+16.5x2
=24+33
=57(平方分米)
答:没有与水接触部分的面积是57平方分米。
【点睛】
(1)这一问属于体积的等积变形,要点是掌握其中不变的为水的体积;
(2)这一问较为复杂,因为没有与水接触部分是5个面,且同属于一个长方体,所以可视
作为一个无盖的长方体的表面积。
19.6分米
【分析】
把正方体铁块熔铸成一个长方体,只是形状改变了,体积没有变,再根据长方
体的体积公式求高即可。
【详解】
8x8x8=512(立方分米)
5124-(4x5)
=5124-20
=25.6
解析:6分米
【分析】
把正方体铁块熔铸成一个长方体,只是形状改变了,体积没有变,再根据长方体的体积公
式求高即可。
【详解】
8x8x8=512(立方分米)
512+(4x5)
=512+20
=25.6(分米)
答:这个长方体的高是25.6分米。
【点睛】
理解正方体铁块熔铸成长方体,体积没有改变是解决此题的关键,掌握长方体和正方体的
体积公式。
20.(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长x宽x高求出水的
体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=
解析:(1)3000立方厘米
(2)1厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长x宽x高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=容器中水的体积,
据此列方程解答。
【详解】
(1)30x20x5
=600x5
=3000(立方厘米)
答:水的体积是3000立方厘米。
(2)解:设这个容器中的水高为x厘米,
30x20x(5—x)=10x5xx
12x(5-x)=x
60—12x=x
13x=60
60
x=一
13
答:这个容器中的水高9厘米。
【点睛】
列方程是解答应用题的一种有效的方法,解题的关键是弄清题意,找出应用题中的等量关
系。
21.见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直
于对称轴,在对称轴的右边画出左图的关键对称点,连结即可;
(2)根据平移的特征,把整个图形的各顶点分别向右平移
解析:见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,
在对称轴的右边画出左图的关键对称点,连结即可;
(2)根据平移的特征,把整个图形的各顶点分别向右平移5格,再依次连结即可。
【详解】
作图如下:
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
■1
11
11
11
【点睛】
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这
条直线对称的点,然后依次连结各对称点即可。平移作图要注意:①方向;②距离。整
个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
22.(1)平移;旋转;
(2)见详解
【分析】
(1)图形①经过向右平移9格,再绕A点顺时针旋转90度得到图形②;
(2)图形①经过向右平移9格得到的图形③,画出图③即可。
【详解】
(1)图形①通过平
解析:(1)平移;旋转;
(2)见详解
【分析】
(1)图形①经过向右平移9格,再绕A点顺时针旋转90度得到图形②;
(2)图形①经过向右平移9格得到的图形③,画出图③即可。
【详解】
(1)图形①通过平移和旋转两种运动方式可以到图形②的位置;
(2)如图所示:
本题考查平移和旋转,解答本题的关键是掌握平移和旋转的概念。
23.(1)3,A(3,1)B(6,4)C(4,4)
(2)见详解
【分析】
三角形的面积=底、高+2,数对先说列再说行;平移时找到三角形三个顶点平移
之后,再连接平移后的三个顶点。
【详解】
(1)2x3
解析:(1)3,A(3,1)B(6,4)C(4,4)
(2)见详解
【分析】
三角形的面积=底、高+2,数对先说列再说行;平移时找到三角形三个顶点平移之后,再连
接平移后的三个顶点。
【详解】
(1)2x3+2=6+2=3(平方厘米)
A(3,1)B(6,4)C(4,4)
【点睛】
本题考查用数对表示数、平移、三角形面积,解答本题的关键是熟练掌握这些知识点。
24.①②见详解;
③(8,5),(11,0),(7,1)
【分析】
①③用数对表示位置时,通常把竖排叫列,横排叫行。一般情况下,确定第
几列时从左往右数,确定第几行时从前往后数。表示列的数在前,表示行的数
解析:①②见详解;
③(8,5),(11,0),(7,1)
【分析】
①③用数对表示位置时,通常把竖排叫列,横排叫行。一般情况下,确定第几列时从左
往右数,确定第几行时从前往后数。表示列的数在前,表示行的数在后,中间用逗号","
隔开,数对加上小括号。
②作平移后的图形步骤:找点一找出构成图形的关键点;定方向、距离一确定平移方向和
平移距离;画线一过关键点沿平移方向画出平行线;定点一由平移的距离确定关键点平移
后的对应点的位置;连点一连接对应点。
【详解】
③新三角形AiBiCi的三个顶点用数对表不,Ai点是(8,5),Bi点是(11,0),Ci点是
(7,1)。
【点睛】
用有顺序的两个数表示出一个确定的位置就是数对。给出物体在平面图上的数对时,就可
以确定物体所在的位置了。
25.960立方厘米
【分析】
正着放和倒着放,底面积相同,高减少了15—4厘米,用减少的体积+减少的高
=长方体底面积,长方体底面积x原来的高=最初水的体积。
【详解】
704+(15-4)
=7044-1
解析:960立方厘米
【分析】
正着放和倒着放,底面积相同,高减少了15—4厘米,用减少的体积十减少的高=长方体底
面积,长方体底面积x原来的高=最初水的体积。
【详解】
704+(15-4)
=704+11
=64(平方厘米)
64x15=960(立方厘米)
答:这个容器最初放了960立方厘米的水
【点睛】
关键是掌握长方体体积公式,长方体体积=底面积x高。
26.160立方厘米
【分析】
已知长方体容器从里面量得长10厘米,宽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商务大厦租赁协议
- 2024年亚洲建筑工程承包合同
- 2024年学生贷款合同:学生与教育贷款机构之间的协议
- 2024年全职医生劳动合同样本
- 2024年个人装修二手房合同书
- 2024年厂房分租协议模板
- 2024年工厂装修清包合同范本
- 2024年工厂劳动条件合同
- 2024年基础设施建设合同协议书
- 建筑勘察协议书样例
- (新版)糖尿病知识竞赛考试题库300题(含答案)
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 教学成果奖培育思考
- 河北省廊坊市药品零售药店企业药房名单目录
- 毕业设计(论文)叉车液压系统设计
- 研发项目立项管理流程总体思路.doc
- 室内装饰装修工程施工组织设计方案(完整版)
- 榆林市第十二中学第二个五年发展规划
- 日本城市生活垃圾处理现状及发展趋势
评论
0/150
提交评论