




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学在考试中是必考科目,因此,学生从一开始就要认真地学习数学。但随着年级的升高,数学的难度增大,进入高中以后,往往有不少学生不能适应高中数学的学习,进而影响到学习的积极性,导致成绩一落千丈。造成这种情况的原因有很多,但主要是由于学生不了解高中数学内容的特点与自身学习方法有问题等所造成的。一、初中数学与高中数学在内容方面的差异1.初中和高中的数学语言有着显著的区别宏观上讲,初中数学主要用形象通俗的语言来表达,而高中数学一下子就触及到非常抽象的集合术语、逻辑运算术语、函数术语等,学生需要很长时间才能把这些符号语言转化、理解并学会运用。2.初中阶段的数学思维方式与高中数学思维方式有显著的不同在初中数学教学中,教师一般都将主要题型建立了统一的思维模式,如解分式方程分为几步、因式分解需先看什么再看什么等,因此学生在初中数学学习中习惯这种机械且便于操作的定势思维方式。而高中数学在思维形式上发生了巨大的变化,抽象的数学语言对学生的思维能力提出了更高的要求。这种能力要求的突变使很多高一学生感到极度不适应,因而数学学习兴趣低下,成绩下降。所以,教师要指导学生在心理上接受这种变化,多思考,做题时把每一步为什么这样做弄清楚,而不是像初中数学那样机械的记忆。一、初中数学形象化,便于学生理解,并且联系生活实际比较多。对于这些知识点,只要用心一些,很是比较容易把握的,运用起来也会比较自如。而高中数学相对来说则比较抽象,学生经常不能很好的把所学知识理解透彻,甚至进入理解误区,如此,便造成运用定理和公式不熟练或运用错误的现象。针对这些情况,建议家长由专业教师引导一下,深入浅出,为高中数学后续课程的学习打下坚实的基础;
二、初中数学浅显化,学生只要认真思考,理解其所表达的意思。而高中很多知识点则较为隐晦,学生体会不到所表达的意思。比如:初中所学的二次函数,比较多的偏向于感性认识,学生们往往能较好地掌握,但是进入高中之后,高中数学对二次函数提出了新的更高的要求,比较偏向于理性思维时,某些学生便会适应不过来。
三、初中数学知识容量相对较小。总体而言,初中数学知识点较少,学生能够通过三年的系统学习,比较好地掌握。高中数学则知识点众多,而每个章节所包含的小知识点则更是繁杂,学生们则往往难以适应。
综上,建议学生与家长以谨慎、认真的态度去对待初三升高中这一蜕变的阶段,因为这是我们迈进高中的第一步,只有第一步走踏实了,我们才能走过高中,踏进高考的大门!初高中数学衔接
初三毕业生经过一年的鏖战,即将升入高中学段,投入新的学习生活。许多初中优秀的学生,上高中后,不适应高中学习,成绩突然下滑,家长非常着急,学生无措手足。究其原因,一方面是由于一些同学上高中后有松一口气的思想,放松了对自己的要求。更重要的是用初中的学习方法对待高中学习,没有搞好初、高中的衔接和过渡。怎么才能解决好这个问题呢?
首先要认识高中数学与初中数学的区别与联系。初中数学中的代数、几何是高中学习的基础,高中数学的代数、立体几何、解析几何是初中数学的深化和发展,如果说初中数学研究的数与形是静止的、孤立的、简单的,那么高中数学则是运动的、变化的和相互联系的;如果说初中学习更多是记忆和模仿,那么高中学习需要的是发散思维和创新意识。高中数学教学中要突出四大能力,即运算能力,空间想象能力,逻辑推理能力和分析问题解决问题的能力。要渗透四大数学思想方法,即数形结合,函数与方程,等价与变换,划分与讨论。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。这些能力、思想方法也正是高考命题的要求。我们即将升入高中的同学应该充分认识到这一点。
其次要利用假期,在初、高中的衔接与过渡上做一些切实的工作。基础不太扎实的同学,可以把初中学习的数学知识如代数中的数的扩充,代数式、方程、函数这四条线索进行总结归纳,为高中学习打下坚实的基础。基础较好的同学可以把初中学过的知识引申、发散。比如初中学习了二次函数,进而研究二次函数与二次三项式、二次方程、二次不等式的关系,用函数的方法解决一元二次方程实根分布问题。
例如:m为何值时方程x2-11x+m=0有两个都大于5的实根.这个问题如果仅考虑根的判别式和根与系数的关系是不充分的,这就需要利用函数的方法,设f(x)=x2-11x+m,把方程转化为函数问题去研究,如图:
Δ=121-4m≥0
-b2a=112>5
f(5)=25-55+m>0■30<m≤3014再如
1993年高考试题,已知关于x的实系数一元二次方程x2+ax+b=0有两个实根α,β,证明如果|α|<2,|β|<2,那么2|a|<4+b,且|b|<4,不正是用了上述的方法吗?
又如我们学习过二次函数的最大值与最小值,还可以进而研究限定区间上的二次函数的最值。例:若2x2+y2=6x,求x2+y2+2x的最大与最小;已知函数y=x2-2ax+1,其中0≤x≤2,求y的最大与最小.这些问题在现有的基础上只要潜心研究是不难解决的。
假期中还可以读一些数学丛书,有的是趣味数学,可以增强学习数学的兴趣;有的是介绍数学的知识分类,比如数的扩充,初中学到实数,完成了四次扩充,如何解决x2=-1的问题呢,高中时要进行数的第五次扩充,引入虚数构成了复数集合。代数式是初中的重要内容,高中还要学习指数式与对数式。初中学习了锐角三角函数,高中要引入任意角三角函数……我们不去研究这些内容,但应该知道在初等数学中学到什么地方,还要学习什么,这样就能提高学习的自觉性,永不满足,不断探索。一)、初中数学与高中数学的差异。
1、知识差异。
初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“00—1800”范围内的,但实际当中也有7200和“--3000”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。2、学习方法的差异。
(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(如:高一有八门课同时学习),每天至少上八节课,自习时间四节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,高中数学教师将不能向初中那样监督每个学生的作业和课外练习,就不能向初中那样把知识让每个学生掌握后再进行新课。
(2)模仿与创新的区别。
初中学生模仿做题,他们模仿老师思维推理较多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即使就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。
3、学生自学能力的差异
初中学生自学能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不*大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有*学生的自学去深刻理解和创新才能适应现代科学的发展。
其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,*的自学最终达到了自强。
4、思维习惯上的差异
初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。
5、定量与变量的差异
初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。
二)高中数学与初中数学特点的变化。
1、数学语言在抽象程度上突变
初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
距离6月还有四个来月,初三的学生们,即将面临中考,进入高中学习,和小学升初中一样,这不仅仅是人生的重大转折,在学业上也有很大的转变。如何做好各阶段的衔接,如何为即将开始的高中生活做好准备是初中即将进入高中的新生们面临的重大课题。首先笔者先来讨论一下初中数学和高中数学的不同之处,一是初中初学比起高中数学更加具体、理论性不强,而一上高中,高一代数刚开始就是理论性很强的集合和函数部分,这会使得有一部分初中数学即使学得很好的学生感到难以适应;二是初中数学则相对简单,只要按照一定的步骤就可以解决,而高中数学的思维方法更多的向理论层次跃进,解题过程更加复杂,需要学生多角度多方面进行思考;三是知识内容的含量明显增大,学生在同样单位时间内掌握知识的工作量要明显得多。所以在新的学习中,学生可能会产生如下问题中的几种:一、有的学生会比较依赖初中学习模式,比如教师会列出中考各类型题目进行反复练习,学生容易养成依赖教师的习惯,甚至是套用题型模式。而到了高中,这种模式一般来说不适合新的学习水平。二、小学、初中高中知识内容难度逐步增大,有的家长可能对于小学和初中知识还可以对孩子进行辅导,但是高中内容,可能局限于水平无法跟上,或者即便是跟上,但是比起高考的要求有着较大的偏差。三、思想松懈,尤其是一些初中数学学习得较好,甚至是拔尖的学生,由于前文所说的初中内容较为简单,故而从思想上没有重视,更加没有从学习方法上做出相应的改变,导致直到考试的时候才发现没有跟上。并且对于自己非常自信,总觉得自己初一、初二的时候数学也没有很好,但是到了初三一咬牙,以努力就可以迅速地提高,迷信自己“抱佛脚”的速度和能力,但是在高中学习中,这是很难做到的,原因就是我们前面所说的主要的初中数学学习和高中不同的几点,并且高一是整个高中数学三年的学习中最关键的一年,其涉及的基础性知识太多了,一旦“开窍”较晚,很容易会导致整个高中数学学习跟不上。虽然初中数学和高中数学有着这样大的不同,但是对于即将到来的高中数学也不需要产生多大的恐惧感。因为初中数学的学习与高中数学的教学还是从本质上有着内在的必然联系的。高中数学是以初中数学为基础的,学生学习数学的兴趣也是从小学到初中一步一步培养出来的。高中数学的新知识的引入必然都不是随随便便,凭空出现的,都是在初中数学的基础之上发展而来,这就要求我们在学习的时候学习高中课程的时候,需要注意把握初中和高中的异同之处、探寻思维上的层进关系。从内在联系上领会到了知识的“为何而来”、“从何而来”、“是什么”和“能干什么”,真正读懂初、高中课程标准和教材内容,就能够从全局上把握初、高中数学知识的体系,全盘梳理初、高中教材内容衔接的知识点,并且在这些知识点上适当拓展,补充间断点,使初、高中数学知识有机地结合起来,成为一体。从教师的角度,也要做好教学方法的衔接和改变,努力培养学生学习数学学的兴趣。初中数学的教学方法,尽管大力努力推行,但是由于受到初中生知识水平的限制,较多的还是采用灌输式的讲解方法。而进入高中,学生无论是生理还是心理,都已经开始了从少年向青年的过渡,学习心理也就由“经验记忆型”被动接受知识向“探索理解型”主动学习知识转变;所以在教学方法上则更多地采取启发式的教学,激发学习主动地进行学习,引导学生从本质上理解所学的内容。因此,教学方法上,注重学生学习兴趣的培养,引发学生对高中数学学习的向往是处理初高中数学教学衔接的落脚点。数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动公司年度工作总结
- 中西方教育体系比较
- 腰骶部筋膜炎护理
- 母婴护理安全教育
- 腹部手术病人的术前护理
- 手部拆线后的护理常规
- 畜牧产业扶贫培训
- 种植牙的配合护理查房
- 2025审核知识培训
- 家庭亲子教育培训体系构建
- 心脏瓣膜病护理常规课件
- 高校课堂教学创新大赛一等奖课件:混合教学模式创新实践
- 卵巢交界性肿瘤诊治进展
- 持续葡萄糖监测临床应用专家共识2024解读
- 《冠心病的规范化诊》课件
- 《数据挖掘与机器学习》 课件7.2.1 K-Means聚类
- 2025年围产期保健工作计划
- 2024年基本公共卫生服务人员培训计划
- 边坡挂网喷浆应急响应方案
- 浙大城市学院《操作系统原理》2021-2022学年第一学期期末试卷
- 食品过敏原培训
评论
0/150
提交评论