集合与常用逻辑用语-2024年高考数学复习(新高考卷)解析版_第1页
集合与常用逻辑用语-2024年高考数学复习(新高考卷)解析版_第2页
集合与常用逻辑用语-2024年高考数学复习(新高考卷)解析版_第3页
集合与常用逻辑用语-2024年高考数学复习(新高考卷)解析版_第4页
集合与常用逻辑用语-2024年高考数学复习(新高考卷)解析版_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题01集合与常用逻辑用语

考情概览

命题解读考向考查统计

1.高考对集合的考查,重点是集合间的2022•新高考I卷,1

基本运算,主要考查集合的交、并、补2023•新高考I卷,1

交集的运算

运算,常与一元二次不等式解法、一元2024•新高考I卷,1

一次不等式解法、分式不等式解法、指2022•新高考II卷,1

数、对数不等式解法结合.根据集合的包含关系求参数2023•新高考n卷,2

2.高考对常用逻辑用语的考查重点关注充分必要条件的判定2023•新高考I卷,7

我口下两点:

(1)集合与充分必要条件相结合问题

的解题方法;

全称、存在量词命题真假的判断2024•新高考n卷,2

(2)全称命题与存在命题的否定和以

全称命题与存在命题为条件,求参数的

范围问题.

2024年真题研析

命题分析

2024年高考新高考n卷未考查集合,I卷依旧考查了集合的交集运算,常用逻辑用语在新高考n卷中考查

了全称、存在量词命题真假的判断,这也说明了现在新高考“考无定题”,以前常考的现在不一定考了,抓住

知识点和数学核心素养是关键!集合和常用逻辑用语考查应关注:(1)集合的基本运算和充要条件;(2)

集合与简单的不等式、函数的定义域、值域的联系。预计2025年高考还是主要考查集合的基本运算。

试题精讲

1.12024新高考I卷寿)已知集合/=何-5</<5},8={-3,-1,0,2,3},则()

A.{-1,0}B.{2,3}C.{-3,-1,0}D.{—1,0,2}

【答案】A

【分析】化简集合A,由交集的概念即可得解.

【详解】因为么=卜|-正<x<指},8={-3,-1,0,2,3},且注意到1〈痛<2,

从而/口8={-1,0}.

故选:A.

3

2.(2024新IWJ考II卷,2)已知命题p:VxGR,|x+11>1;命题q:>0,x=xJ则()

A.2和q都是真命题B.N和q都是真命题

c.2和「9都是真命题D.r7和都是真命题

【答案】B

【分析】对于两个命题而言,可分别取--1、x=l,再结合命题及其否定的真假性相反即可得解.

【详解】对于夕而言,取x=T,则有,+[=0<1,故夕是假命题,可是真命题,

对于夕而言,取X=l,贝(I有/=]3=1=%,故q是真命题,―!夕是假命题,

综上,”和^都是真命题.

故选:B.

近年真题精选

1.(2022新高考I卷-1)若集合M=石<4},N={x|3x21},则McN=()

A.{x|0<x<2}B.<x<2|C.{x|3<x<16}D.^-<x<161

【答案】D

【分析】求出集合后可求McN.

【详解】M={x\0<x<16},N={x\x>^\,故McN=[xgwx<161,

故选:D

2.(2023新高考I卷•:!)己知集合”={-2,-1,0,1,2},TV=(JC|X2-x-6>0),则AfcN=()

A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.{2}

【答案】C

【分析】方法一:由一元二次不等式的解法求出集合N,即可根据交集的运算解出.

方法二:将集合M中的元素逐个代入不等式验证,即可解出.

【详解】方法一:因为傲={#2-_6叫=(-吗-2]33,+功,而/={-2,-1,0,1,2},

所以McN={-2}.

故选:C.

方法二:因为M={-2,-1,0,1,2},将-2,-1,0,1,2代入不等式/_》_620,只有-2使不等式成立,所以

McN={-0].

故选:C.

3.(2022新高考n卷-1)已知集合么={-1,1,2,4},3=卜卜一心1},则NC13=()

A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}

【答案】B

【分析】方法一:求出集合3后可求/c瓦

【详解】[方法一]:直接法

因为8={尤|0VxV2},故/门8={1,2},故选:B.

[方法二]:【最优解】代入排除法

产-1代入集合2={尤卜-心1},可得2W1,不满足,排除A、D;

x=4代入集合2={尤卜-1归1},可得341,不满足,排除C.

故选:B.

【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;

方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.

4.(2023新高考II卷2)设集合4={0,-a},B={1,a-2,2a-2],若A=B,则。=().

A.2B.1C.1D.-1

【答案】B

【分析】根据包含关系分。-2=0和2a-2=0两种情况讨论,运算求解即可.

【详解】因为4。8,则有:

若4-2=0,解得a=2,此时4={0,-2},5={1,0,2),不符合题意;

若2。-2=0,解得”1,此时/={0,-1},«=符合题意;

综上所述:«=1.

故选:B.

5.(2023新高考I卷-7)记S”为数列{%}的前〃项和,设甲:{%}为等差数列;乙:{'}为等差数列,则

n

()

A.甲是乙的充分条件但不是必要条件

B.甲是乙的必要条件但不是充分条件

C.甲是乙的充要条件

D.甲既不是乙的充分条件也不是乙的必要条件

【答案】C

【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判

断作答.,

【详解】方法1,甲:{%}为等差数列,设其首项为外,公差为小

cn(n-l)Sn-1ddS,d_

贝||S=H------------d7,n=Q]H-------d7=——〃+----,"+i

nIn2212«+1n~2

因此{土}为等差数列,则甲是乙的充分条件;

n

cSS〃a.+「S”

反之,乙:中为等差数列,即甫-丁为常数,设为f,

+1)

即第*乙则•如+1),有加=(—・〃(〃-

ana

两式相减得:„=„+i~(n~\)an-2tn,BPan+1-an=It,对"=1也成立,

因此{%}为等差数列,则甲是乙的必要条件,

所以甲是乙的充要条件,C正确.

方法2,甲:{%}为等差数列,设数列{%}的首项4,公差为",即J

则&=%+/Dd=4"+q-4,因此{y4为等差数列,即甲是乙的充分条件;

n222n

cccc

反之,乙:{'}为等差数列,即—=

n77+1nn

即Sn=圈+-1)D,5„_,=(〃-+(H-1)(H-2)D,

当“22时,上两式相减得:S“-S,i=5+2(〃-1)。,当”=1时,上式成立,

于是=a1+2(n-l)Z>,又%i=%=。+2"。—♦+2(〃-1)0=2。为常数,

因此{七}为等差数列,则甲是乙的必要条件,

所以甲是乙的充要条件.

故选:C

必备知识速记

一、元素与集合

1、集合的含义与表示

某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其

他对象.

2、集合元素的特征

(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.

(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.

(3)无序性:集合与其组成元素的顺序无关.

3、元素与集合的关系

元素与集合之间的关系包括属于(记作aeA)和不属于(记作aeA)两种.

4、集合的常用表示法

集合的常用表示法有列举法、描述法、图示法(韦恩图).

5、常用数集的表示

数集自然数集正整数集整数集有理数集实数集

符号NN*或N+ZQR

二、集合间的基本关系

(1)子集:一般地,对于两个集合4、8,如果集合N中任意一个元素都是集合8中的元素,我们就说这

两个集合有包含关系,称集合N为集合8的子集,记作/=8(或32/),读作”/包含于8”(或“8包

含N”).

(2)真子集:对于两个集合力与8,若且存在6e8,但6e/,则集合/是集合8的真子集,记

作/$5(或).读作“工真包含于8”或“2真包含/

(3)相等:对于两个集合/与8,如果/=8,同时8=/,那么集合4与8相等,记作N=3.

(4)空集:把不含任何元素的集合叫做空集,记作0;0是任何集合的子集,是任何非空集合的真子集.

三、集合的基本运算

(1)交集:由所有属于集合/且属于集合8的元素组成的集合,叫做/与2的交集,记作ZcB,即

/c8={x|xe/且尤e8}.

(2)并集:由所有属于集合/或属于集合8的元素组成的集合,叫做/与8的并集,记作NuB,即

/U8={xIX€/或X68}.

(3)补集:对于一个集合/,由全集。中不属于集合/的所有元素组成的集合称为集合/相对于全集。

的补集,简称为集合N的补集,记作C。/,即4/=&|苫€。,且工e/}.

四、集合的运算性质

(1)AC\A=A>4n0=0,/n3=8n/,=AcB=B.

⑵A\JA=A^/U0=/,A\JB=B\JA^4s,BS.

(3)/n(Q/)=0,/U(Q/)=。,CU(CUA)=A.

(4)AnB=A^>AuB=B<^>AcB^>CvB^CLrA<^>AnCLr£=0

【集合常用结论】

(1)若有限集/中有〃个元素,则4的子集有2"个,真子集有才-1个,非空子集有2"-1个,非空真子集

有2'-2个・

(2)空集是任何集合工的子集,是任何非空集合B的真子集.

(3)A^BoA^B=AoA^B=BoCVBcCVA.

(4)CV(AA5)=(CVA)U(C[7B),CU(AU5)=(CVA)A(CVB).

五、充分条件、必要条件、充要条件

1、定义

如果命题“若°,则/'为真(记作pnq),则/是4的充分条件;同时g是〃的必要条件.

2、从逻辑推理关系上看

(1)若0=>q且4冷",则。是q的充分不必要条件;

(2)若0冷夕且qnp,则。是g的必要不充分条件;

(3)若png且q=>p,则。是g的的充要条件(也说0和g等价);

(4)若。#4且则。不是q的充分条件,也不是q的必要条件.

六、全称量词与存在量词

(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“V”表

示.含有全称量词的命题叫做全称量词命题.全称量词命题“对〃中的任意一个x,有p(x)成立"可用符号

简记为“VxeM,p(x)”,读作“对任意x属于",有">)成立”.

(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个“在逻辑中通常叫做存在量词,并用符号

表示.含有存在量词的命题叫做存在量词命题.存在量词命题”存在M中的一个毛,使p(Xo)成立”可用

符号简记为“土…”,尸(X。)”,读作“存在M中元素%,使p(x0)成立"(存在量词命题也叫存在性命题).

七、含有一个量词的命题的否定

(1)全称量词命题:VxeMM(X)的否定可为*oeM,-<p(x0).

(2)存在量词命题eM,p(x0)的否定r;为VxeM,r?(x).

注:全称、存在量词命题的否定是高考常见考点之一.

【常用逻辑用语常用结论】

1、从集合与集合之间的关系上看

设/={x|Mx)},B={x|q(x)}.

(1)若4=8,则。是q的充分条件(p=>q),q是。的必要条件;若/冬波,则p是q的充分不必要条

件,q是。的必要不充分条件,即且4冷";

注:关于数集间的充分必要条件满足:“小n大”.

(2)若8=/,则夕是q的必要条件,q是。的充分条件;

(3)若/=8,则p与q互为充要条件.

集合三模题

一、单选题

1.(2024•河南•三模)命题“九>032+》-1>0”的否定是()

A.Vx>0,x2+x-1>0B.Vx>0,x2+x-l<0

C.<0,x2+x-1>0D.3x<0,x2+x-1<0

【答案】B

【分析】根据存在量词命题的否定形式,即可求解.

【详解】根据存在量词命题的否定为全称量词命题,

即命题“*>0,/+x-1>0”的否定为“Vx>0,i+x-140

故选:B.

2.(2024・湖南长沙•三模)已知集合舷={刈》区2}1="|班<1},则McN=()

A.[2,e)B.[-2,1]C.[0,2)D,(0,2]

【答案】D

【分析】由对数函数单调性解不等式,化简N,根据交集运算求解即可.

【详解】因为“=[-2,2],N=(O,e),

所以A/nN=(O,2].

故选:D.

3.(2024•河北衡水•三模)已知集合/={1,2,3,4,5},S=-1<Ig(x-l)<,则-3=

A.B.{2,3,4}C.{2,3}D.jx|^<x<31

【答案】B

【分析】求得3=卜生丽+11,可求

【详解】5=|x|-l<lg(x-l)<|j=jx|^<x<VT0+l1,

又4={1,2,3,4,5},故y2,3,4},

故选:B.

4.(2024•陕西•三模)已知集合/=何-1VXV2},2={X|--+3工>0},则/口8=()

A.RB.(0,2]C.[-1,0)D.[-1,3)

【答案】D

【分析】先解一元二次不等式求出集合8,再根据集合并集定义计算即可.

【详解】由-f+3x>0,解得0<x<3,所以集合8={x[0<x<3},

所以/口8="|一1(工<3},所以/口2=[-1,3).

故选:D.

5.(2024•安徽三模)已知集合/={+5VxVl},5={x|x>-2),则图中所示的阴影部分的集合可以表示

为()

A.{x|-2<x<l}B.{x|-2<x<l}

C.{x卜5VxW-2}D.卜卜5Vx<-2}

【答案】C

【分析】图中所示的阴影部分的集合为QBC/,结合集合的运算即可得解.

【详解】由图可知,阴影部分表示的集合的元素为Q2C/,

而/={尤卜5W1},B=1x|x>—21,则Qg={x|xV-2},

c/=卜卜5VxV-2},

故所求集合为{xHVxW-2}.

故选:C.

6.(2024・湖南长沙•三模)已知直线/:6-〉+后发=0,圆。:/+/=1,则“后<1”是“直线/上存在点尸,

使点尸在圆。内”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

【答案】B

【分析】由直线与圆相交可求得-1〈左<1,则通过判断-1〈左<1与左<1的关系可得答案.

旦I,

【详解】由直线/上存在点P,使点尸在圆。内,得直线/与圆O相交,即

J*]

解得-1<左<1,即人

因为左<1不一定能得到T〈人<1,而-1〈后<1可推出k<\,

所以“左<1”是“直线I上存在点P,使点尸在圆。内”的必要不充分条件.

故选:B

7.(2024・湖北荆州•三模)已知集合/={X|2X-X24()},B=^A,其中R是实数集,集合C=(-s,l],则

BcC=()

A.(7,0]B.(0,1]C.(一叫0)D.(0,1)

【答案】B

【分析】解出一元二次不等式后,结合补集定义与交集定义计算即可得.

【详解】由2X-/W0可得X&0或xz2,贝(]3=4/={X[0<X<2},

又C=(-8,l],故8cC=(O,l].

故选:B.

8.(2024•北京•三模)已知集合N={x|lnx<l},若。任/,则。可能是()

1

A.-B.1C.2D.3

e

【答案】D

【分析】解对数不等式化简集合A,进而求出。的取值集合即得.

【详解】由lnx<l,得0<x<e,则/={x|0<x<e},以/={无|》40或Ne},

由得aet;/,显然选项ABC不满足,D满足.

故选:D

9.(2024•河北衡水•三模)已知函数/'(无)=(2'+机Nfsinx,贝b/=1”是“函数/⑴是奇函数”的()

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条

【答案】B

【分析】由函数/(幻是奇函数,可求得俏=1,可得结论.

【详解】若函数/(x)是奇函数,

则/«+/(-x)=(2*+m-2^)sinx-{2-x+m-2x)sinr=(l-m)(2A-2T卜inx=0恒成立,即%=1,

而加2=1,得“7=±1.

故“/=1”是“函数/(')是奇函数”的必要不充分条件.

故选:B.

10.(2024•内蒙古•三模)设a,/是两个不同的平面,加,/是两条不同的直线,且a。夕=/则“加///”是

“加〃尸且机〃a”的()

A.充分不必要条件B.充分必要条件

C.必要不充分条件D.既不充分也不必要条件

【答案】C

【分析】根据题意,利用线面平行的判定定理与性质定理,结合充分条件、必要条件的判定方法,即可求

解.

【详解】当加///时,加可能在a内或者「内,故不能推出加〃尸且加//a,所以充分性不成立;

当加//尸且时,设存在直线〃ua,且"//优,

因为加//6,所以〃〃£,根据直线与平面平行的性质定理,可知〃〃/,

所以//〃,即必要性成立,故“加///”是“加/R且机//a”的必要不充分条件.

故选:C.

11.(2024•北京•三模)已知/={x|logz(x_l)41},S=|x||x-3|>2},则/()

A.空集B.或x>5}

C.{x|xV3或x>5且xRl}D.以上都不对

【答案】A

【分析】先求出集合43,再由交集的定义求解即可.

【详解】A={x|log2(x-1)<log22}={x|0<x-1<2}={x|l<x<3},

8={X卜-3>2或工-3<-2}={%,<1或x>5},

所以ZcB=0.

故选:A

12.(2024・四川・三模)己知集合/={0,3,5},8={x|x(x-2)=0},则[-8=()

A.0B.{0}C.{0,2,3,5}D.{0,3}

【答案】B

【分析】将集合8化简,然后结合交集的运算,即可得到结果.

【详解】由题意8={X|MX-2)=0}={0,2},所以/口8={0,3,5}20,2}={0}.

故选:B.

13.(2024・重庆•三模)已知集合4=}€11k2-》-2<0},8={4>=2"广€/},则()

A.(T,4)B.C.D.

【答案】D

【分析】解一元二次不等式求解集合A,根据指数函数单调性求解值域得集合B,然后利用交集运算求解

即可.

【详解】/=卜£R/一、一2<o}={xeR](x-2)(x+l)<0}={xeR[-l<x<2}=(-1,2),

则8={肘=2\xe(-1,2)}=<""=,

所以/口3=e,2].

故选:D

14.(2024•北京•三模)"OBC为锐角三角形”是“sin/>cos8,sin5>cosC,sinC>cos/”的()

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

【答案】C

【分析】根据诱导公式及正弦函数的单调性,再结合充分条件和必要条件的定义即可得解.

【详解】充分性:

因为“BC为锐角三角形,

所以/+即

所以sin/>sin^-5^=cos5,

同理可得sinB>cosC,sinC>cosA,

故充分性得证;

必要性:

因为sin/〉cosB,所以sinZ

因为0<8<兀,所以一]<、一3<5,

若/>7]T,则/JT+

若则/>]一8,所以/+

综上,A+B>3,

TTTT

同理8+C>—,/+C>—,

22

所以。8C为锐角三角形,

必要性得证,

综上所述,为充分必要条件.

故选:C.

15.(2024・上海•三模)设1<a<6,集合/={l,a,6},集合8=“卜=孙+?,x,yeN,xw,对于集合8有

下列两个结论:①存在。和6,使得集合8中恰有5个元素;②存在。和b,使得集合2中恰有4个元

素.则下列判断正确的是()

A.①②都正确B.①②都错误C.①错误,②正确D.①正确,②错误

【答案】A

【分析】由题意可知2“<2b,aH—<b+—<ab+—<ab-\—,对于叵)举例分析判断即可,对于②,若

abba

二71

2Q=b-\—

b,贝1|6+:=2〃,然后构造函数,利用导数结合零点存性定理可确定出6,从而可进行判断.

2b=ab+qb

〔b

【详解】当x=l/=。时,t=xy+2=〃+Q=2Q,

x

当x=l,y=b时,t=xy+—=b+b=2b,

x

当x=a,y=l时,t=xy+—=a+—,

xa

当x==b时,t=xy+—=ab+—,

xa

当x=y=l时,t=xyb—,

xb

、a

当1/x—u7^y—ci时't=xyH—y=ab7H—,

fxb

因为J1<q<b,月f以2a<2b,aT—<6-1—<abH—<ab—,

abba

当a=3,6=VJ时,2a=3,2b=2^3,a+—=—+—=—,b+—=y[3+-\==,

2a236by/33

所以2=13,26,n如有5个元素,所以①正确,

若b,则46="+!〕,得6+1=2后

2b=ab+土Ib)b

[b

f(x)=X+--24X(X>I),贝!]f\x)=1\~X2(x>1),

XX

i21--

令g(x)=l——T~x5(X>D,贝!lgXx)=F+_x万>0(x>1),

xx2

所以g(X)在(1,+8)上递增,即/(X)在(1,+8)上递增,

所以当x>2时,f\x)>1(2)=]_;_*=3:立>0,

所以/(X)在(2,+8)上递增,

因为"2)=2+;_2血<0,/(4)=4+;_2〃=:>0,

所以存在6e(2,4),使/(6)=0,即存在6e(2,4),b+;=2址成立,

b

此时。=如+力,

所以存在a和b,使得集合B中恰有4个元素,所以②正确,

故选:A

【点睛】关键点点睛:判断结论②的关键是构造函数,利用导数和零点存在性定理分析判断.

二、多选题

16.(2024•江西南昌•三模)下列结论正确的是()

A.若{x|x+3>O}c{x|x-"O}=0,则。的取值范围是0<一3

B.若{x|x+3>O}c{x|x-a<O}=0,则°的取值范围是aV-3

C.若{x|x+3>0}u{x|x-a<0}=R,则。的取值范围是aN-3

D.若{x|x+3>0}u{x|x-a<0}=R,则°的取值范围是a>-3

【答案】BD

【分析】先将条件等价转化,然后根据对应范围判断命题的真假即可.

【详解】对于选项A和B,{x|x+3>0}={x|x>-3},{x|x-a<0}={x|x<a},

若{小>-3}c{巾<a}=0,则。的取值范围是a-3,所以A错误,B正确;

对于选项C和D,若{x|x>-3}u{x|x<a}=R,则。的取值范围是a>-3,所以D正确,C错误.

故选:BD.

17.(2024・辽宁•三模)已知maxX.}表示国,马,…,西,这〃个数中最大的数.能说明命题'"。,仇。,

deR,max{a,b}+max{c,d}2max{a,6,c,d}”是假命题的对应的一组整数0,b,c,d值的选项有()

A.1,2,3,4B.-3,-1,7,5

C.8,—11—2,-3D.5,3,0,—1

【答案】BC

【分析】根据maxR,%,…,当}的含义说明AD不符合题意,举出具体情况说明BC,符合题意即可.

【详解】对于A,D,从其中任取两个数作为一组,剩下的两数作为另一组,

由于这两组数中的最大的数都不是负数,其中一组中的最大数即为这四个数中的最大值,

故都能使得命题“\/a,b,c,deR,max[a,b]+max{c,d}Nmax{a,b,c,d}”成立;

对于B,当max{。,6}=max{-3,-1}=一1,max{7,5}=7时,而max{-3,-1,7,5}=7,

此时一1+7<7,即命题“Wa,仇0,rfeR,11^{26}+111@乂{0,4211^{用"0,"}”是假命题;

对于C,当max{a,b}=max{8,-1]=8,max{-2,-3)=-2时,而max{8,-l,-2,-3}=8,

此时一2+8<8,即命题“Va,b,c,deR,max{a,b}+max[c,d]>max{a也c,d}”是假命题;

故选:BC

18.(2024・重庆•三模)命题“存在x>0,使得机/+2工_1>0”为真命题的一个充分不必要条件是()

A.m>-2B.m>-\C.m>0D.m>1

【答案】CD

【分析】根据题意,转化为存在x>0,设定加〉号,利用二次函数的性质,求得W的最小值为T,

XX

求得切的取值范围,结合充分不必要条件的定义和选项,即可求解.

【详解】由题意,存在x>0,使得加f+2-1>0,即加>与=(工)2-2、!=(工一1)2-1,

XXXX

11-2r

当上一1=0时,即x=l时,Y的最小值为-1,故%>-1;

XX

所以命题“存在x>0,使得小2+2》-1>0”为真命题的充分不必要条件是同办-1}的真子集,

结合选项可得,C和D项符合条件.

故选:CD.

19.(2024•黑龙江齐齐哈尔•三模)已知。,6>0,则使得“a>b”成立的一个充分条件可以是()

A.B.\a-2\>\b-2\C.crb—ab1>a—bD.ln(/+1)>In伍~+1)

【答案】AD

【分析】由不等式的性质可判断AD;取特值可判断B;九一加〉”/)可化为+:结合y=x+^

abx

的单调性可判断C.

【详解】对于A,因为仍>0,4<4>故故A选项正确;

对于B,取。=1,6=2,此时满足1>0,但〃<6,B选项错误;

对于C,4人一々〃>a可得:a2b+b>ab2+a,

贝!因为a,b>0,即£±1>=1

所以。+工>6+:,因为函数y=x+1在(0,+⑹不单调,所以C选项错误;

abx

对于D,由巾?+1)可知,1〉〃,因为凡6>。,

所以。>b,故D选项正确,

故选:AD.

20.(2024•安徽安庆・三模)已知集合/={xeZ|/-2x-8<0},集合8=卜炉>3旭,机eR,xeR},若AcB

有且仅有3个不同元素,则实数加的值可以为()

A.0B.1C.2D.3

【答案】AB

【分析】解一元二次不等式可得A,结合指数函数性质可解出8,结合交集性质即可得解.

【详解】由X2-2X-8<0,解得-2<X<4,

故/={xeZ|/-2x-8<0}={-1,0,1,2,3},

由9,>3%可得x>5,

B=1x|9A>3"',meR,xeR}=|x|x>~~->meR,xeR1,

要使NcB有且仅有3个不同元素,则04々<1,解得04加<2,

故选:AB.

三、填空题

21.(2024・湖南长沙三模)已知集合/={1,2,4},B={a,a2],若4口3=/,则。=.

【答案】2

【分析】由=/得5=/,令4=1、〃=2、。=4求出集合B,即可求解.

【详解】由=得B=4.

当。=1时,〃=〃2,不满足元素的互异性,舍去;

当。=2时,5={2,4},满足5。力,符合题意;

当a=4时,5={4,16},不满足5。4,舍去.

综上,a=2.

故答案为:2

22.(2024•上海三模)己知集合/={01,2},S={x|x3-3x<1},则4口5=

【答案】{0』

【分析】把集合中的元素代入不等式X3-3X<1检验可求得/A3={0,1}.

【详解】当x=0时,()3-3x0=041,所以0e8,

当x=l时,F_3xl=-2W1,所以le8,

当x=2时,23-3X2=2>1,所以2任5,

所以/口3={0,1}.

故答案为:{051}.

23.(2024•湖南衡阳三模)已知集合么={凡。+1},集合B={xeN|x2_x_240},若4=贝I]

a-.

【答案】0或1

【分析】先求出集合8,再由4=8可求出。的值.

【详解】ix2-x-2<0,得(x+l)(x-2)V0,解得-14X42,

因为xeN,所以x=0,l,2,

所以8={0,1,2},

因为/={a,Q+l},且/C7B,

所以。=0或4=1,

故答案为:0或1

24.(2024•湖南邵阳•三模)^={xeN|log2(x-3)<2),S=则/门8=.

【答案】{4,5,6}

【分析】根据对数不等式求集合A,根据分式不等式求集合B,进而可得NcB.

【详解】若bg2(x-3)V2,则0<x-3W4,解得3<xV7,

所以/={xeN|3<x47}={4,5,6,7};

若二|<0,则卜;3)『)W0,解得3Vx<7,

x-7[工一7。0

所以8={x[34x<7};

所以/口8={4,5,6}.

故答案为:{4,5,6}.

25.(2024・安徽•三模)己知集合/={42,-1},3={引>=/户€/},若的所有元素之和为12,则实

数人.

【答案】-3

【分析】分类讨论彳是否为L-2,进而可得集合B,结合题意分析求解.

【详解】由题意可知:且222,

当x=4,则?=分;当x=2,则y=4;当尤=-1,贝!jy=l;

若2=1,则8={1,4},此时的所有元素之和为6,不符合题意,舍去;

若4=-2,则3={1,4},此时/u5的所有元素之和为4,不符合题意,舍去;

若且彳〜2,贝!]8={1,4,阴,故22+几+6=12,解得2=-3或4=2(舍去);

综上所述:彳=-3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论