




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FinanceandEconomicsDiscussionSeries
FederalReserveBoard,Washington,D.C.
ISSN1936-2854(Print)
ISSN2767-3898(Online)
InterconnectednessintheCorporateBondMarket
CelsoBrunetti,MatthewCarl,JacobGerszten,ChiaraScotti,ChaeheeShin
2024-066
Pleasecitethispaperas:
Brunetti,Celso,MatthewCarl,JacobGerszten,ChiaraScotti,andChaeheeShin(2024).“InterconnectednessintheCorporateBondMarket,”FinanceandEconomicsDiscus-sionSeries2024-066.Washington:BoardofGovernorsoftheFederalReserveSystem,
/10.17016/FEDS.2024.066
.
NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.
InterconnectednessintheCorporateBondMarket
CELSOBRUNETTIMATTHEWCARLJACOBGERSZTENCHIARASCOTTICHAEHEESHIN*
April2024
ABSTRACT
Doesinterconnectednessimprovemarketquality?Yes.
Wedevelopanalternativenetworkstructure,theassetsnetwork:assetsareconnectediftheyareheldbythesameinvestors.Weuseseverallargedatasetstobuildtheassetsnetworkforthecorporatebondmarket.ThroughcarefulidentificationstrategiesbasedontheCOVID-19shockand“fallenangels,”wefindthatinterconnectednessimprovesmarketqualityespeciallyduringstressperiods.Ourfindingscontributetothedebateontheroleofinterconnectednessinfinancialmarketsandshowthathighlyintercon-nectedcorporatebondsallowforrisksharingandrequirealowercompensationforrisk.
Keywords:financialstability,interconnectedness,institutionalinvestors,bigdataJELClassificationCodes:C13,C55,C58,G1
*CelsoBrunettiandChaeheeShinarewiththeFederalReserveBoard.ChiaraScottiisattheBankofItaly.MatthewCarlisaPh.D.studentattheUniversityofWisconsin-Madison.JacobGersztenisattheUniversityofMichiganLawSchool.Theauthorscanbereachedviaemailat
celso.brunetti@,
mcarl@,
gersztenj@,
chiara.scotti@bancaditalia.it,
and
chaehee.shin@
.WethankNathanFoley-FisherandseminarandconferenceparticipantsattheFederalReserveBoard,QatarCenterforGlobalBankingandFinance,King’sCollegeLondon,UniversityofWisconsin,2022IAAEconference,2022EEA-ESEMconference,and2022InternationalRiskManagementConferenceforhelpfulcomments.TheviewsexpressedinthisarticlearethoseoftheauthorsandnotnecessarilyoftheFederalReserveSystem.WethankGeneKangforexcellentresearchassistance.
1
1.Introduction
Thenotionof“interconnectedness”becamepopularwiththeGreatFinancialCrisis(GFC).Linkagesbetweenmarketsandinstitutionsaswellastheramificationsoffinancialdistresstotherealeconomyputinterconnectednessinthelimelight.Infact,interconnectednessisnowpartoftheregulatoryframework
.1
Interconnectednessisasophisticatedconcept:toolittleinterconnectedness(sparsenetwork)mayimpedemarketfunctioning,andtoomuchinterconnectedness(densenetwork)mayexacerbatetheefectsofashock.Thegoalofthispaperistostudythelinkagesbetweeninterconnectednessandmarketquality.
Wechoosethecorporatebondmarketasoursandbox.Thismarkethasgrownsubstan-tiallyinrecentyearsandrepresentsanimportantsourceoffundingforthecorporatesec-tor
.2
Itisdominatedbyinstitutionalinvestors,whichallowsustomaplinkagesamongthelargestmarketplayerssuchasinsurancecompaniesandmutualfunds.Comparedtoequitymarkets,itsliquidityandmarketfunctioninginthecorporatebondmarkethavebeenundermuchscrutiny,leadingtoarapiddevelopmentoftheliterature(see,
Boyarchenkoetal.,
2021;
Dick-NielsenandRossi,
2019;
TrebbiandXiao,
2019
).Finally,thecorporatebondmarketex-periencedsignificantdisruptionsinMarch2020becauseoftheCOVID-19pandemic(see,
HaddadandMuir,
2021
).Hence,studyinghowinterconnectednessrelatestomarketqualityinbothtranquiltimesaswellasintimesofdistressisparticularlyinformative.
Inthispaper,wedevelopanalternativeandcomplementarynetworkstructure—theas-setsnetwork—whichmirrorsthetraditionalnotionofaportfoliosimilaritynetwork.Thisnewnetworkconstructisderivedattheassetlevelandisbasedontheideathatassetsareinterconnectediftheyareheldbythesameinvestors.
Themoretraditionalportfoliosimilaritynetworkcapturesspilloverefectsduetoover-lappingportfolios:twofinancialinstitutionswithsimilarportfoliosarelinkedbecauseashocktoonefinancialinstitutionhasrepercussionsontheotherfinancialinstitutionthrough
1InterconnectednessisoneofthecriteriausedbytheFinancialStabilityBoardtodesignateGlobalSystemi-callyImportantBanks(G-SIBs).IntheU.S.,interconnectednessisalsousedbytheFinancialStabilityOversightCouncil(FSOC)todesignatenonbankSystemicallyImportantFinancialInstitutions(SIFIs).
2Ithasreachedover$15trillionasofQ42023–seeFinancialAccountoftheU.S.
2
theircommonassetholdings(see,
Cacciolietal.,
2015
).Incontrast,ournetworkconstructcaptureslinkagesamongassetsgiventhattheseassetsareheldbyseveralfinancialinsti-tutions.Theemphasisofournetworkisontheassetsasopposedtofinancialinstitutions.Studyingthenetworkofassetsisfundamentallyimportantforseveralreasons.First,itallowsustoinvestigatehowinterconnectednessoffinancialassetsislinkedtoasset-specificcharac-teristicssuchasliquidityandvolatilityand,moregenerally,tomarketquality.Second,thereisagrowingliteratureoninstitutionalassetpricing;ournetworkstructureprovidesanotherlensthroughwhichtostudyhowassetsheldbyseveralinstitutions—ourassetsnetwork—impactthepricingprocess.Thisisparticularlyrelevantinourframeworkwhichanalyzescorporatebondholdingsbylargeinvestors.Third,assetsinterconnectednessprovidesanal-ternativeanduniqueperspectiveonhowfinancialassetsarelinkedincontrasttocorrelationanalysis.
DieboldandYılmaz
(2014)and
Billioetal.
(2012)constructassetsnetworksbased
onthevariance-covariancematrixofreturns.Ournetworkbuildsedgesbasedonwhetherassetsareheldbycommoninvestors,andis,therefore,potentiallymoreaccuratebecauseitdoesnotrequireestimatinganymomentofthereturnsdistribution(see,
Adamicetal.,
2017
).Finally,thetraditionaloverlappingportfolionetworkputsemphasisonfinancialinstitutionsandismoresuitedforanentity-basedsupervisoryapproach,whileourassetsnetworkmayprovideusefulforanactivity-basedapproachforregulation
.3
Wefirstfocusontheinterconnectednessofthecorporatebondmarket,leveragingtherichinformationavailableintheThomsonReuterseMAXXdatabase,whichcontainsdataoncorporatebondholdingsattheinstitutionalinvestor-bond-year-quarterlevel.Webuildanetworkofcorporatebondsandmeasuretheirinterconnectednessusingcosinesimilarity.Asexpected,wefindthatbondsissuedbylargefirmsarepartoftheportfolioofmanyinvestorsandformthecoreofournetworks,whilesmallerbondissuerscomprisetheperiphery—implyingthatonlyafewinvestorsholdthesebonds.WealsomatchtheinterconnectednessmeasuresofcorporatebondswiththeTRACEdatabasethathassecurity-leveldataoncor-poratebondtradingvolume,liquidity,andvolatility.
Thenewinterconnectednessconstructandthecomplexityofourdataallowustousearichpanelregressionanalysistoinvestigatethelinkbetweeninterconnectednessandspread,
3See,
Borioetal.
(2022)
.
3
liquidity,andvolatilityofcorporatebonds.Wefindthatthehighertheinterconnectednessofanasset—meaningthattheassetiscommontomanyinvestors’portfolios—theloweritsspreadandthehigheritsliquidity.Thisresulthighlightsthat,asexpected,corporatebondsthatareheldacrossseveralportfoliosrequirealowercompensationforriskandaremoreliq-uid.Thisrelationis,however,afectedbymarketconditions.Weexploretheheterogeneousefectsofinterconnectednessthroughouttheconditionaldistributionoftheresponsevari-ables(spreads,liquidity,andvolatility),whilecontrollingforbondcharacteristics,throughapaneldataquantileregression.Wefindthattherelationwehavejusthighlightedisstrongerwhenafinancialassetisunderstress,i.e.thespreadandliquidityofanassetareintheuppertailoftheirconditionaldistributions.Altogether,higherinterconnectednessisassociatedwithlowerspreadsandvolatility,andhigherliquidityinnormalmarketconditions(meanefect)andtheseresultsarestrongerwhenmarketsaredistressed(asshownbyquantileregressions)
.4
Whiletheanalysisthusfardocumentslinkagesbetweeninterconnectednessandmarketqualitymeasures,weareinterestedindeterminingcausality.Thatis,weareinterestedinunderstandingwhetherhigherinterconnectednessreducesspreads,increasesliquidity,andtamesvolatility.Thisisafundamentalissue.Ontheonehand,
AllenandGale
(2000)develops
amodelinwhichcompletenetworks(highinterconnectedness)helpmitigatetheefectsofashockthroughrisksharingand,therefore,arebeneficialtofinancialstability.Ontheother,
Acemogluetal.
(2015)showsthatiftheshockistoolarge,highinterconnectedness
propagatestheshockleadingtoamorefragilefinancialsystem.TheCOVID-19outbreakrepresentsalargeexogenousshock.Following
Hassanetal.
(2023),weseparatebondsissued
byfirmsafectedbytheshockfrombondsissuedbyfirmsnotafectedbythepandemic.Wefindthattheefectsoftheshockaremitigatedwhenbondsissuedbyfirmsexposedtothepandemicarehighlyinterconnectedtobondsissuedbyfirmsnotexposedtotheshock—spreaddecreasesandliquidityincreases.Ourresultsindicatethatinterconnectednessenablesrisksharingand,onnet,isbeneficialtothecorporatebondmarket.
4Ourresultsarerobusttodiferentmodelspecificationsandtoseveralcontrolsthatareknowntoafectcorporatebondpricingdynamics,suchasinvestorconcentrationandthenumberofuniqueinvestors.
4
Tocorroboratetheseresultswealsolookat“fallenangels:”bondsdowngradedfrominvestmentgradetohighyield.WeselectbondswithsimilarcharacteristicsandacreditratingofBBB-(thelowestcreditratingintheinvestmentgradecategory).Onlysomeofthesebondsaredowngradedinthenextperiod.Sincethebondsweconsiderinthisexercisehavesimilarcharacteristics,thebifurcationbetweenfallenangelsandnon-fallenangelsisplausiblyexogenouswithintheshorttimewindowweareconsidering—theanalysisonlyconsiderstwoperiods,beforeandafterthedowngrade
.5
Ourresultsshowthataonestandarddeviationincreaseininterconnectednessofafallenangelsubstantiallydecreasesspreadsandincreasesliquidity.
Overall,ourfindingsestablishthathigherlevelsofinterconnectednessarepositivelylinkedtomarketquality.Moreover,thelinkbetweeninterconnectednessandmarketqual-itychangesovertimewhenmarketconditionsalsochange.Importantly,thislinkisstrongerduringperiodsofmarketdistress.Finally,interconnectednessisparticularlyimportantwhenlargenegativeshockshitfinancialmarkets(COVID-19)andwhenmajorcorporateeventsoccur(fallenangels).Inthesecrisissituations,interconnectedness,throughrisksharing,promotesmarketfunctioning.
Ourpapercontributestoseveralstrandsoftheliterature.First,wecontributetothein-terconnectednessliterature.Networksinfinancehavebeenmappedusingthreemaintech-niques:(i)correlationnetworks,inwhichedgesbetweenfinancialinstitutionsarebasedonestimatesofthevariance-covariancematrixofpubliclyavailabledata,suchasassetreturns(see,
Billioetal.,
2012;
DieboldandYılmaz,
2014
);(ii)physicalnetworks,inwhichedgescapturecontractualagreementsamongcounterparties,suchasinterbanktransactions(see,
Brunettietal.,
2019
);and(iii)commonholdingsnetworks,inwhichinvestorsareconnectediftheyholdsimilarportfolios(see,
Cacciolietal.,
2015;
Greenwoodetal.,
2015;
Cetorelli
etal.,
2023
).Inthispaper,weproposeanewapproachofmappingfinancialnetworkswhichmirrorsthenotionofoverlappingportfolios,andwhichwecalltheassetsnetworkorin-vestorsimilaritynetwork.Similartoourapproach,
AntónandPolk
(2014)connectstocks
commonlyheldbymutualfunds.Theirgoalistostudyhowcommonownershipafectsthe
5Känzig
(2021
)proposesanidentificationstrategybasedonpreciselyselectingthetimeframeofspecificevents,whichforusisthedowngrade.
5
cross-sectionalcorrelationintherateofreturns.Ourfocusisinsteadonthenetworkstruc-tureanditsproperties.Weareinterestedinfullyunderstandingtheinterconnectednessofthenewnetworkandhowitevolvesbothovertimeandindiferentmarketconditions.Infact,ourgoalistoprovideanewandalternativemappingforfinancialnetworks.
Second,weconnecttotheemergingliteratureoninstitutionaldemand-basedassetpric-ing.Onestrandofthisliteraturestudiestheroleofintermediariesinassetpricing,suchasin
HaddadandMuir
(2021)and
Heetal.
(2017)
.Anotherstrandoftheliteratureexaminesthe
roleofinstitutionalholdersinassetpricingand,inparticular,thecompositionofinstitutionalinvestorsasapotentialstatevariableinthecorporatebondmarket.Forinstance,
Ben-David
etal.
(2021)showhowtherisingconcentrationofholdingsbyinstitutionalinvestorsafects
stockvolatilityandpriceine般ciency,
LiandYu
(2022)findthatinvestorconcentrationis
relatedtobondliquidity,and
LiandYu
(2021)and
Bretscheretal.
(2022)analyzehowthe
compositionofinstitutionalinvestorsrelatestocorporatebondmarketqualities.
Corelletal.
(2023)alsolookatEuropeancorporatebondstofindhowconvenienceyieldscouldvaryby
diferingdemandsfromvariousinstitutionalinvestors.Overall,thisliteraturetracksbacktothedemand-basedassetpricingapproachof
KoijenandYogo
(2019)
.Wecontributetothisemergingareabyshowingthattheinterconnectednessofanassetplaysanimportantroleincorporatebondmarkets.
Finally,werelatetotherecentfinancialstabilityliteraturethattriestodeterminewhetherhighinterconnectednessisavulnerabilityoravirtueofthefinancialsystem.Con且ictingviewsexistintheliterature,from
AllenandGale
(2000),whofindinterconnectednesstobe
avirtue,tomorerecentempiricalworksfindingevidenceforfinanciallinkagesandoverlap-pingholdingsofassetstobeacontagionorfiresalesmechanism(
Allenetal.,
2012;
Duarte
andEisenbach,
2021;
Falatoetal.,
2021;
Greenwoodetal.,
2015
,amongothers).Somewhereinbetweenthesetwocon且ictingviews,manyrecentworksstudythenon-monotonictradeofbetweencontagionandrisksharing,socialoptimalityofinterconnectedness,andconditionsforwhichonetypeofnetworkisbetterthananother(
Acemogluetal.,
2015;
Cabralesetal.,
2017;
Elliottetal.,
2014,
2021;
Gofman,
2017
,amongothers).Ourresultsprovideevidenceofacausalefect:interconnectednessimprovesmarketquality.
6
Thepaperisorganizedasfollows.Section
2
describesournovelnetworkapproach,illus-tratingthebuildingblocksoftheasset-basednetworkofinvestorsimilarity.Section
3
sum-marizesthewealthofdatathatweuseintheempiricalinvestigation.Section
4
describestheresultingmeasuresthatweuseintheanalysis.Section
5
explainstheregressionframeworkanditsresults,includingthoseforthequantileregressions.Section
6
examinesthecausallinkagesbetweeninterconnectednessandmarketmarketquality.Section
7
concludes.
2.NetworkApproach
Thereareseveralwaystoconstructnetworksinfinance.Thethreemainapproachescanbebrie且ydescribedas:(i)correlationnetworks,whicharebasedonestimatesofthevariance-covariancematrixofpubliclyavailabledatasuchasassetreturns(see,
Billioetal.,
2012;
DieboldandYılmaz,
2014
);
6
(ii)physicalnetworks,whichre且ectcontractualagree-mentsbetweencounterpartiesandcaptureimportantaspectsofrisksuchasconterpartyrisk(see,
Brunettietal.,
2019
);and(iii)overlappingportfoliosnetworks,whichconnectinvestorsthroughtheircommonholdings(see,
Cacciolietal.,
2015;
Greenwoodetal.,
2015
).Inthispaper,weproposeanewapproachofmappingfinancialnetworkswhichparallelsthenotionofoverlappingportfolios,butthatdrawsedgesbetweenassetsratherthaninstitutions.
Thestartingpointisabipartitenetworkwithtwosetsofnodes:financialinstitutionsorinvestors(퐼s)andfinancialassets(퐴s).AsshowninFigure
1a,
ifafinancialinstitutionholdsanassetinitsportfolio,thereisanedgebetweenthatassetandthatfinancialinstitution.Forexample,becauseinvestor퐼1holdsasset퐴1,thereisanedgebetween퐼1and퐴1.Thetraditionalnetworkofoverlappingportfolios,orcommonassetholdings,impliesthatsince퐴1isheldalsoby퐼2and퐼3,allthreeinvestorsareinterconnectedthroughtheircommonholdingsof퐴1.Similarly,because퐴2isheldby퐼2and퐼3,thereisalinkbetweenthesetwoinvestors(see
Baruccaetal.,
2021
).
Wederiveanalternativenovelnetworkstructureattheassetlevel,basedontheideathattwoassets,퐴1and퐴2,areinterconnectediftheyareheldbythesameinvestor.InFigure
1b,
6Arelatedapproachadoptsquantileregressionanalyses,see
Andoetal.
(2021
)and
Härdleetal.
(2016)
.
7
퐴1and퐴3areinterconnectedbecausebothassetsareheldintheportfolioofinvestor퐼3.Similarly,퐴1and퐴2arealsointerconnectedsincetheyareheldbyinvestors퐼2and퐼3.Infact,퐴1and퐴2areinterconnectedtoahigherextentthan퐴1and퐴3becausetheseassetssharetwooverlappinginvestors.
Thisasset-basednetworkallowsustoexamineimportantefectsofinterconnectedness
acrossfinancialassets.InFigure
1b,
interconnectednessbetween퐴1and퐴3capturesand
quantifiesthefollowingmechanism.Supposeashockhits퐴1(e.g.,downgradetojunk)andreducesitsmarketvalue.Thisshockwillthennegativelyimpacttheperformanceoftheportfoliosofallinvestors,퐼1,퐼2,and퐼3sincetheyallhold퐴1.Investorswillbeforcedtore-balancetheirportfoliostoraisemorecapitalorliquidity(e.g.,inthecaseofmutualfunds,tomeetredemptions)andthere-balancingwilltriggerachangeinholdingsofboth퐴2and퐴3becausethere-balancinginvestorsalsohold퐴2(퐼2and퐼3)and퐴3(퐼1).
InFigure
1b,
ourmeasureofinterconnectednessbetween퐴1and퐴2isstrongerthanthatbetween퐴1and퐴3becausetwoinvestors(퐼2and퐼3)holdtheseassetsasopposedtojustoneinvestorfor퐴1and퐴3.Thisnetworkfeatureimpliesthatthesameinitialshockon퐴1(and/or퐼2and/or퐼3)willlikelyspilloverto퐴2toagreaterextentthanitwillto퐴3,sinceboth퐼2and퐼3willre-balancetheirportfoliosasopposedtojustoneinvestor(퐼3)re-balancinginthecaseof퐴1and퐴3.
Noticethatthenotionofoverlappinginvestorsforabondis,however,diferentthanthesheernumberofinvestorsholdingthebond.InFigure
1b,
퐴1isheldbythehighestnumberofinvestors(퐼1,퐼2,and퐼3),followedby퐴2,whichisheldbytwoinvestors(퐼2and퐼3).However,퐴1hasthesamenumberofoverlappinginvestors—anddegreeofinterconnectedness—as퐴2.Thisarisesbecauseoutofthethreeinvestorsholding퐴1,oneinvestor(퐼1)doesnotinvestinanyotherassets,therebyeliminatingitspropensityto“overlap”withotherinvestors.Ingeneral,aswehaveillustratedinthisexample,itispossiblethatassetswithfewerinvestorsaremoreinterconnected(havemoreoverlappinginvestors)thanotherassetswithmorein-vestors.
Inwhatfollows,wedescribeournotionoftheasset-basednetworkinmoredetailandhighlightthenetworkmeasureusedintheanalysis.
8
2.1.NetworkofFinancialAssetsandInstitutions
Westartbydenotingthenetworkoffinancialassetsandfinancialinstitutionsas푄=(퐴,퐼,E),where퐴=퐴1,퐴2,...,퐴푆isthesetofnodescorrespondingtofinancialassets(corpo-ratebondsonly,inourcase),퐼=퐼1,퐼2,...,퐼푁representsthesetoffinancialinstitutions,andEisa푆×푁matrixrepresentingtheamount,퐸푖,푘,heldby퐼푘in퐴푖:
퐼1
퐼2
···
퐼푁
퐴1
퐸11
퐸12
···
퐸1푁
1
푉퐴
(1)
퐴푆
퐸푆1
퐸푆2
···
퐸푆푁
푆
푉퐴
1
푉퐼
2
푉퐼
···
푉퐼
푁
Summingacrosscolumnsgivesthetotalamountofsecurity푖heldbythesystem(in-vestorsinourdata),푉푖퐴,knownasthestrengthofthenetwork:
푉푖퐴=퐸푖,푘,(2)
andsummingacrossrowsproducesthetotalamountinvestedbyinvestor푘inallassets,푉.
Dependingonthescopeoftheanalysis,퐸푖,푘couldbenormalizedbythetotalissuedamountofasset푖outstandingorby푉푖퐴.
O
WedefineasEthecorrespondingadjacencymatrix
9
퐼1
퐼2
···
퐼푁
퐴1
O
퐸11
O
퐸12
···
O
퐸1푁
퐷퐴
1
(3)
퐴푆
퐸푆1
퐸푆2
···
퐸푆푁
퐷퐴
푆
퐷퐼
1
퐷퐼
2
···
퐷퐼
푁
O
wherethegenericelement퐸푖,푘=1if퐸푖,푘>푞andzerootherwise.Theparameter푞denotesathresholdandintraditionalnetworkanalysis푞=0
.7
Similartobefore,thesumacrosscolumnsgivesthetotalnumberoffinancialinstitutions
holdingsecurity푖,퐷,knownasnetworkdegree,
퐷퐸푘,(4)
andthesumacrossrowsgeneratesthetotalnumberofassetsinvestor푘hasinvestedin,퐷.
2.2.Asset-basedNetworkofInvestorSimilarity
Thenetworkwefocusoninthispaperisderivedfromthenetworkoffinancialassetsandfinancialinstitutions푄describedintheprevioussectionandcapturesinterconnectednessamongassetsbasedonwhethertheassetsbelongtothesameportfolios.
Wedefinethenetworkoffinancialassetsas푂퐴=(퐴,P퐴),where퐴={퐴1,퐴2,...,퐴푆}representsthesetofassets,andP퐴isthematrixmeasuringsimilaritiesofassetsintermsofinvestors.Severaldistancemeasuresexisttoquantifysimilarities(see,
Newman,
2010;
Delpinietal.,
2013;
Baruccaetal.,
2021;
Brunettietal.,
2023)
.Inthispaper,weusethenotion
7Giventherichnessofourdata,wecouldalsoadopt푞>0toselectthestrongestlinksamongnodes.
10
ofcosinesimilarity(ordistance)tomeasureinterconnectednessbetweenanypairofassets푖
and푗∈{1,...,푆}:
푁OO
Ⅱ퐸푖ⅡⅡ퐸푗Ⅱ
푃(5)
O
whereⅡ퐸푖Ⅱisthenormofthevectorofinvestorsholdingasset푖(see,Getmanskyetal.,2016;
Baruccaetal.,
2021
)and푃,thecosinesimilarity,capturesthedistancebetweentwonon-
zerovectorsofaninner-productspace
.8
Finally,foreachasset푖,weaggregateitspair-wiseinterconnectednesswithallotherassets푗in푆where푗≠푖and푖,푗∈{1,...,푆}toproduceanasset-levelmeasureofintercon-nectednessinthisnetwork:
Wenormalizeasset-levelinterconnectednessby(푆一1)*푁,where푆isthetotalnumberofassetsand푁isthetotalnumberofinvestors,toaccountforthefactthatthenumberoffinancialassetsandinstitutionschangeovertimeinourdata.
8Therecanbealternativedefinitionsofsimilarity.Oneoptionistousesimplecountsofthenumberof
OO
portfoliostwoassetsarepartofandhenceusethefollowingdefinitionfor푃퐴:푃퐴=퐸(퐸)T.Anotheroptionistocomputethesemeasuresusingtheparamountsheldbyinvestors푘asafractionoftheamountoutstandingofassets푘,therebycapturinganintensivemarginmeasureofinvestorsimilarity.Inthiscase,wedivideeachelement퐸푖,푘from(
3
)by퐼푠푠푢푒푎푚표푢푛푡표푢푡푠푡푎푛푑푖푛푔푖,andusethisnewadjacencymatrixdirectlytocomputesimilaritymeasures푃퐴.Wetestedtheaforementionedtwoalternativemeasuresandfoundthattheresultsweresimilartothoseusingcosinesimilarityontheextensivemarginofinvestors’holdings.Yetanothermeasure
ofsimilaritycanbederivedfromthenotionofEuclideandistance,namely,푃퐸푘一퐸,푘
However,wedidnotusethismeasureinouranalysisduetothesparsityofthenetworkinoursample.
11
2.3.AnExample:HowShocksPropagateThroughanAssetsNetwork
Anexamplemayhelptoexplaintheseconcepts.Considerthenetworkbelowconsistingofonlythreeassetsandthreeinvestors,wheretheentriesintheleftmatrixrepresentthe
dollaramountofeachassetheldbyeachinvestor.Thisnetworkcanberepresentedbythe。
adjacencymatrixE푒푥푎푚푝푙푒ontheright:
퐴3001퐴3001
。
Thetop-leftcellofthematrixE푒푥푎푚푝푙푒isequalto1becauseinvestor퐼1hasasset퐴1inherportfolio,while0in푐푒푙푙(2,1)indicatesthatinvestor퐼1hasnotinvestedinasset퐴2.Usingequation(
5
),wecanthencomputethecosinesimilaritymetricforanytwopairsofassets:
퐴30.580.71-
Accordingly,followingequation(
6
),thevectorofinterconnectednessmeasurescorrespond-
ingtoPis:
Themagnitudesofasset-levelinterconnectednessshownin퐼퐶indicatethat퐴2,
hasthehighestlevelofinterconnectednessinthenetwork,followedby퐴1and퐴3,whichhasthelowestinterconnectedness.Wehighlightthatthattheinterconnectednessmeasurecapturesanon-linearaspectofthenetworkbeyondthesimplenumberoffirmsinvestingin
12
eachasset,i.e.,theassets’degreeinthebipartitegraph.Forexample,although퐴1isheldbyallinvestorsand퐴2isonlyheldbytwoinvestors,퐴2isthemostcentralnodeinthisnetwork.퐴2’scentralitygivesrisetoahigherasset-levelinterconnectednessrelativeto퐴1.
Whichassetexperiencestheinitialshockplaysafundamentalrole
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品代购合同协议书
- 项目合同:人员招聘与管理
- 香港酒店联盟合同价格指南
- 三明市重点中学2024-2025学年高三第五次月考英语试题试卷英语试题含解析
- 浙江杭州西湖区2025年初三物理试题5月模拟试题含解析
- 内蒙古自治区兴安盟两旗一县2025年初三下学期大联考卷Ⅰ英语试题试卷含答案
- 采购合同书转让协议
- 山西省吕梁地区柳林县2025届三下数学期末考试模拟试题含解析
- 江苏省扬州市江都区五校联谊2025届初三下学期期末数学试题理试题分类汇编含解析
- 云南省玉溪市元江县第一中学2024-2025学年第二学期学业水平考试化学试题含解析
- 护理带教老师选拔
- DBJ33T 1020-2022 建设工程地质钻探安全技术规程
- 我的家乡吴忠
- 公交车预防春困
- 涂层与基材结合强度-洞察分析
- 网络安全服务方案
- 板翅式换热器介绍
- 人教九年级语文上册《沁园春 雪》示范课教学课件
- 团体旅游餐饮供餐合同协议
- 养殖项目的水土保持方案
- 中建通风与空调工程施工方案全套范本
评论
0/150
提交评论