美联储-公司债券市场的相互关联性(英)_第1页
美联储-公司债券市场的相互关联性(英)_第2页
美联储-公司债券市场的相互关联性(英)_第3页
美联储-公司债券市场的相互关联性(英)_第4页
美联储-公司债券市场的相互关联性(英)_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FinanceandEconomicsDiscussionSeries

FederalReserveBoard,Washington,D.C.

ISSN1936-2854(Print)

ISSN2767-3898(Online)

InterconnectednessintheCorporateBondMarket

CelsoBrunetti,MatthewCarl,JacobGerszten,ChiaraScotti,ChaeheeShin

2024-066

Pleasecitethispaperas:

Brunetti,Celso,MatthewCarl,JacobGerszten,ChiaraScotti,andChaeheeShin(2024).“InterconnectednessintheCorporateBondMarket,”FinanceandEconomicsDiscus-sionSeries2024-066.Washington:BoardofGovernorsoftheFederalReserveSystem,

/10.17016/FEDS.2024.066

.

NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.

InterconnectednessintheCorporateBondMarket

CELSOBRUNETTIMATTHEWCARLJACOBGERSZTENCHIARASCOTTICHAEHEESHIN*

April2024

ABSTRACT

Doesinterconnectednessimprovemarketquality?Yes.

Wedevelopanalternativenetworkstructure,theassetsnetwork:assetsareconnectediftheyareheldbythesameinvestors.Weuseseverallargedatasetstobuildtheassetsnetworkforthecorporatebondmarket.ThroughcarefulidentificationstrategiesbasedontheCOVID-19shockand“fallenangels,”wefindthatinterconnectednessimprovesmarketqualityespeciallyduringstressperiods.Ourfindingscontributetothedebateontheroleofinterconnectednessinfinancialmarketsandshowthathighlyintercon-nectedcorporatebondsallowforrisksharingandrequirealowercompensationforrisk.

Keywords:financialstability,interconnectedness,institutionalinvestors,bigdataJELClassificationCodes:C13,C55,C58,G1

*CelsoBrunettiandChaeheeShinarewiththeFederalReserveBoard.ChiaraScottiisattheBankofItaly.MatthewCarlisaPh.D.studentattheUniversityofWisconsin-Madison.JacobGersztenisattheUniversityofMichiganLawSchool.Theauthorscanbereachedviaemailat

celso.brunetti@,

mcarl@,

gersztenj@,

chiara.scotti@bancaditalia.it,

and

chaehee.shin@

.WethankNathanFoley-FisherandseminarandconferenceparticipantsattheFederalReserveBoard,QatarCenterforGlobalBankingandFinance,King’sCollegeLondon,UniversityofWisconsin,2022IAAEconference,2022EEA-ESEMconference,and2022InternationalRiskManagementConferenceforhelpfulcomments.TheviewsexpressedinthisarticlearethoseoftheauthorsandnotnecessarilyoftheFederalReserveSystem.WethankGeneKangforexcellentresearchassistance.

1

1.Introduction

Thenotionof“interconnectedness”becamepopularwiththeGreatFinancialCrisis(GFC).Linkagesbetweenmarketsandinstitutionsaswellastheramificationsoffinancialdistresstotherealeconomyputinterconnectednessinthelimelight.Infact,interconnectednessisnowpartoftheregulatoryframework

.1

Interconnectednessisasophisticatedconcept:toolittleinterconnectedness(sparsenetwork)mayimpedemarketfunctioning,andtoomuchinterconnectedness(densenetwork)mayexacerbatetheefectsofashock.Thegoalofthispaperistostudythelinkagesbetweeninterconnectednessandmarketquality.

Wechoosethecorporatebondmarketasoursandbox.Thismarkethasgrownsubstan-tiallyinrecentyearsandrepresentsanimportantsourceoffundingforthecorporatesec-tor

.2

Itisdominatedbyinstitutionalinvestors,whichallowsustomaplinkagesamongthelargestmarketplayerssuchasinsurancecompaniesandmutualfunds.Comparedtoequitymarkets,itsliquidityandmarketfunctioninginthecorporatebondmarkethavebeenundermuchscrutiny,leadingtoarapiddevelopmentoftheliterature(see,

Boyarchenkoetal.,

2021;

Dick-NielsenandRossi,

2019;

TrebbiandXiao,

2019

).Finally,thecorporatebondmarketex-periencedsignificantdisruptionsinMarch2020becauseoftheCOVID-19pandemic(see,

HaddadandMuir,

2021

).Hence,studyinghowinterconnectednessrelatestomarketqualityinbothtranquiltimesaswellasintimesofdistressisparticularlyinformative.

Inthispaper,wedevelopanalternativeandcomplementarynetworkstructure—theas-setsnetwork—whichmirrorsthetraditionalnotionofaportfoliosimilaritynetwork.Thisnewnetworkconstructisderivedattheassetlevelandisbasedontheideathatassetsareinterconnectediftheyareheldbythesameinvestors.

Themoretraditionalportfoliosimilaritynetworkcapturesspilloverefectsduetoover-lappingportfolios:twofinancialinstitutionswithsimilarportfoliosarelinkedbecauseashocktoonefinancialinstitutionhasrepercussionsontheotherfinancialinstitutionthrough

1InterconnectednessisoneofthecriteriausedbytheFinancialStabilityBoardtodesignateGlobalSystemi-callyImportantBanks(G-SIBs).IntheU.S.,interconnectednessisalsousedbytheFinancialStabilityOversightCouncil(FSOC)todesignatenonbankSystemicallyImportantFinancialInstitutions(SIFIs).

2Ithasreachedover$15trillionasofQ42023–seeFinancialAccountoftheU.S.

2

theircommonassetholdings(see,

Cacciolietal.,

2015

).Incontrast,ournetworkconstructcaptureslinkagesamongassetsgiventhattheseassetsareheldbyseveralfinancialinsti-tutions.Theemphasisofournetworkisontheassetsasopposedtofinancialinstitutions.Studyingthenetworkofassetsisfundamentallyimportantforseveralreasons.First,itallowsustoinvestigatehowinterconnectednessoffinancialassetsislinkedtoasset-specificcharac-teristicssuchasliquidityandvolatilityand,moregenerally,tomarketquality.Second,thereisagrowingliteratureoninstitutionalassetpricing;ournetworkstructureprovidesanotherlensthroughwhichtostudyhowassetsheldbyseveralinstitutions—ourassetsnetwork—impactthepricingprocess.Thisisparticularlyrelevantinourframeworkwhichanalyzescorporatebondholdingsbylargeinvestors.Third,assetsinterconnectednessprovidesanal-ternativeanduniqueperspectiveonhowfinancialassetsarelinkedincontrasttocorrelationanalysis.

DieboldandYılmaz

(2014)and

Billioetal.

(2012)constructassetsnetworksbased

onthevariance-covariancematrixofreturns.Ournetworkbuildsedgesbasedonwhetherassetsareheldbycommoninvestors,andis,therefore,potentiallymoreaccuratebecauseitdoesnotrequireestimatinganymomentofthereturnsdistribution(see,

Adamicetal.,

2017

).Finally,thetraditionaloverlappingportfolionetworkputsemphasisonfinancialinstitutionsandismoresuitedforanentity-basedsupervisoryapproach,whileourassetsnetworkmayprovideusefulforanactivity-basedapproachforregulation

.3

Wefirstfocusontheinterconnectednessofthecorporatebondmarket,leveragingtherichinformationavailableintheThomsonReuterseMAXXdatabase,whichcontainsdataoncorporatebondholdingsattheinstitutionalinvestor-bond-year-quarterlevel.Webuildanetworkofcorporatebondsandmeasuretheirinterconnectednessusingcosinesimilarity.Asexpected,wefindthatbondsissuedbylargefirmsarepartoftheportfolioofmanyinvestorsandformthecoreofournetworks,whilesmallerbondissuerscomprisetheperiphery—implyingthatonlyafewinvestorsholdthesebonds.WealsomatchtheinterconnectednessmeasuresofcorporatebondswiththeTRACEdatabasethathassecurity-leveldataoncor-poratebondtradingvolume,liquidity,andvolatility.

Thenewinterconnectednessconstructandthecomplexityofourdataallowustousearichpanelregressionanalysistoinvestigatethelinkbetweeninterconnectednessandspread,

3See,

Borioetal.

(2022)

.

3

liquidity,andvolatilityofcorporatebonds.Wefindthatthehighertheinterconnectednessofanasset—meaningthattheassetiscommontomanyinvestors’portfolios—theloweritsspreadandthehigheritsliquidity.Thisresulthighlightsthat,asexpected,corporatebondsthatareheldacrossseveralportfoliosrequirealowercompensationforriskandaremoreliq-uid.Thisrelationis,however,afectedbymarketconditions.Weexploretheheterogeneousefectsofinterconnectednessthroughouttheconditionaldistributionoftheresponsevari-ables(spreads,liquidity,andvolatility),whilecontrollingforbondcharacteristics,throughapaneldataquantileregression.Wefindthattherelationwehavejusthighlightedisstrongerwhenafinancialassetisunderstress,i.e.thespreadandliquidityofanassetareintheuppertailoftheirconditionaldistributions.Altogether,higherinterconnectednessisassociatedwithlowerspreadsandvolatility,andhigherliquidityinnormalmarketconditions(meanefect)andtheseresultsarestrongerwhenmarketsaredistressed(asshownbyquantileregressions)

.4

Whiletheanalysisthusfardocumentslinkagesbetweeninterconnectednessandmarketqualitymeasures,weareinterestedindeterminingcausality.Thatis,weareinterestedinunderstandingwhetherhigherinterconnectednessreducesspreads,increasesliquidity,andtamesvolatility.Thisisafundamentalissue.Ontheonehand,

AllenandGale

(2000)develops

amodelinwhichcompletenetworks(highinterconnectedness)helpmitigatetheefectsofashockthroughrisksharingand,therefore,arebeneficialtofinancialstability.Ontheother,

Acemogluetal.

(2015)showsthatiftheshockistoolarge,highinterconnectedness

propagatestheshockleadingtoamorefragilefinancialsystem.TheCOVID-19outbreakrepresentsalargeexogenousshock.Following

Hassanetal.

(2023),weseparatebondsissued

byfirmsafectedbytheshockfrombondsissuedbyfirmsnotafectedbythepandemic.Wefindthattheefectsoftheshockaremitigatedwhenbondsissuedbyfirmsexposedtothepandemicarehighlyinterconnectedtobondsissuedbyfirmsnotexposedtotheshock—spreaddecreasesandliquidityincreases.Ourresultsindicatethatinterconnectednessenablesrisksharingand,onnet,isbeneficialtothecorporatebondmarket.

4Ourresultsarerobusttodiferentmodelspecificationsandtoseveralcontrolsthatareknowntoafectcorporatebondpricingdynamics,suchasinvestorconcentrationandthenumberofuniqueinvestors.

4

Tocorroboratetheseresultswealsolookat“fallenangels:”bondsdowngradedfrominvestmentgradetohighyield.WeselectbondswithsimilarcharacteristicsandacreditratingofBBB-(thelowestcreditratingintheinvestmentgradecategory).Onlysomeofthesebondsaredowngradedinthenextperiod.Sincethebondsweconsiderinthisexercisehavesimilarcharacteristics,thebifurcationbetweenfallenangelsandnon-fallenangelsisplausiblyexogenouswithintheshorttimewindowweareconsidering—theanalysisonlyconsiderstwoperiods,beforeandafterthedowngrade

.5

Ourresultsshowthataonestandarddeviationincreaseininterconnectednessofafallenangelsubstantiallydecreasesspreadsandincreasesliquidity.

Overall,ourfindingsestablishthathigherlevelsofinterconnectednessarepositivelylinkedtomarketquality.Moreover,thelinkbetweeninterconnectednessandmarketqual-itychangesovertimewhenmarketconditionsalsochange.Importantly,thislinkisstrongerduringperiodsofmarketdistress.Finally,interconnectednessisparticularlyimportantwhenlargenegativeshockshitfinancialmarkets(COVID-19)andwhenmajorcorporateeventsoccur(fallenangels).Inthesecrisissituations,interconnectedness,throughrisksharing,promotesmarketfunctioning.

Ourpapercontributestoseveralstrandsoftheliterature.First,wecontributetothein-terconnectednessliterature.Networksinfinancehavebeenmappedusingthreemaintech-niques:(i)correlationnetworks,inwhichedgesbetweenfinancialinstitutionsarebasedonestimatesofthevariance-covariancematrixofpubliclyavailabledata,suchasassetreturns(see,

Billioetal.,

2012;

DieboldandYılmaz,

2014

);(ii)physicalnetworks,inwhichedgescapturecontractualagreementsamongcounterparties,suchasinterbanktransactions(see,

Brunettietal.,

2019

);and(iii)commonholdingsnetworks,inwhichinvestorsareconnectediftheyholdsimilarportfolios(see,

Cacciolietal.,

2015;

Greenwoodetal.,

2015;

Cetorelli

etal.,

2023

).Inthispaper,weproposeanewapproachofmappingfinancialnetworkswhichmirrorsthenotionofoverlappingportfolios,andwhichwecalltheassetsnetworkorin-vestorsimilaritynetwork.Similartoourapproach,

AntónandPolk

(2014)connectstocks

commonlyheldbymutualfunds.Theirgoalistostudyhowcommonownershipafectsthe

5Känzig

(2021

)proposesanidentificationstrategybasedonpreciselyselectingthetimeframeofspecificevents,whichforusisthedowngrade.

5

cross-sectionalcorrelationintherateofreturns.Ourfocusisinsteadonthenetworkstruc-tureanditsproperties.Weareinterestedinfullyunderstandingtheinterconnectednessofthenewnetworkandhowitevolvesbothovertimeandindiferentmarketconditions.Infact,ourgoalistoprovideanewandalternativemappingforfinancialnetworks.

Second,weconnecttotheemergingliteratureoninstitutionaldemand-basedassetpric-ing.Onestrandofthisliteraturestudiestheroleofintermediariesinassetpricing,suchasin

HaddadandMuir

(2021)and

Heetal.

(2017)

.Anotherstrandoftheliteratureexaminesthe

roleofinstitutionalholdersinassetpricingand,inparticular,thecompositionofinstitutionalinvestorsasapotentialstatevariableinthecorporatebondmarket.Forinstance,

Ben-David

etal.

(2021)showhowtherisingconcentrationofholdingsbyinstitutionalinvestorsafects

stockvolatilityandpriceine般ciency,

LiandYu

(2022)findthatinvestorconcentrationis

relatedtobondliquidity,and

LiandYu

(2021)and

Bretscheretal.

(2022)analyzehowthe

compositionofinstitutionalinvestorsrelatestocorporatebondmarketqualities.

Corelletal.

(2023)alsolookatEuropeancorporatebondstofindhowconvenienceyieldscouldvaryby

diferingdemandsfromvariousinstitutionalinvestors.Overall,thisliteraturetracksbacktothedemand-basedassetpricingapproachof

KoijenandYogo

(2019)

.Wecontributetothisemergingareabyshowingthattheinterconnectednessofanassetplaysanimportantroleincorporatebondmarkets.

Finally,werelatetotherecentfinancialstabilityliteraturethattriestodeterminewhetherhighinterconnectednessisavulnerabilityoravirtueofthefinancialsystem.Con且ictingviewsexistintheliterature,from

AllenandGale

(2000),whofindinterconnectednesstobe

avirtue,tomorerecentempiricalworksfindingevidenceforfinanciallinkagesandoverlap-pingholdingsofassetstobeacontagionorfiresalesmechanism(

Allenetal.,

2012;

Duarte

andEisenbach,

2021;

Falatoetal.,

2021;

Greenwoodetal.,

2015

,amongothers).Somewhereinbetweenthesetwocon且ictingviews,manyrecentworksstudythenon-monotonictradeofbetweencontagionandrisksharing,socialoptimalityofinterconnectedness,andconditionsforwhichonetypeofnetworkisbetterthananother(

Acemogluetal.,

2015;

Cabralesetal.,

2017;

Elliottetal.,

2014,

2021;

Gofman,

2017

,amongothers).Ourresultsprovideevidenceofacausalefect:interconnectednessimprovesmarketquality.

6

Thepaperisorganizedasfollows.Section

2

describesournovelnetworkapproach,illus-tratingthebuildingblocksoftheasset-basednetworkofinvestorsimilarity.Section

3

sum-marizesthewealthofdatathatweuseintheempiricalinvestigation.Section

4

describestheresultingmeasuresthatweuseintheanalysis.Section

5

explainstheregressionframeworkanditsresults,includingthoseforthequantileregressions.Section

6

examinesthecausallinkagesbetweeninterconnectednessandmarketmarketquality.Section

7

concludes.

2.NetworkApproach

Thereareseveralwaystoconstructnetworksinfinance.Thethreemainapproachescanbebrie且ydescribedas:(i)correlationnetworks,whicharebasedonestimatesofthevariance-covariancematrixofpubliclyavailabledatasuchasassetreturns(see,

Billioetal.,

2012;

DieboldandYılmaz,

2014

);

6

(ii)physicalnetworks,whichre且ectcontractualagree-mentsbetweencounterpartiesandcaptureimportantaspectsofrisksuchasconterpartyrisk(see,

Brunettietal.,

2019

);and(iii)overlappingportfoliosnetworks,whichconnectinvestorsthroughtheircommonholdings(see,

Cacciolietal.,

2015;

Greenwoodetal.,

2015

).Inthispaper,weproposeanewapproachofmappingfinancialnetworkswhichparallelsthenotionofoverlappingportfolios,butthatdrawsedgesbetweenassetsratherthaninstitutions.

Thestartingpointisabipartitenetworkwithtwosetsofnodes:financialinstitutionsorinvestors(퐼s)andfinancialassets(퐴s).AsshowninFigure

1a,

ifafinancialinstitutionholdsanassetinitsportfolio,thereisanedgebetweenthatassetandthatfinancialinstitution.Forexample,becauseinvestor퐼1holdsasset퐴1,thereisanedgebetween퐼1and퐴1.Thetraditionalnetworkofoverlappingportfolios,orcommonassetholdings,impliesthatsince퐴1isheldalsoby퐼2and퐼3,allthreeinvestorsareinterconnectedthroughtheircommonholdingsof퐴1.Similarly,because퐴2isheldby퐼2and퐼3,thereisalinkbetweenthesetwoinvestors(see

Baruccaetal.,

2021

).

Wederiveanalternativenovelnetworkstructureattheassetlevel,basedontheideathattwoassets,퐴1and퐴2,areinterconnectediftheyareheldbythesameinvestor.InFigure

1b,

6Arelatedapproachadoptsquantileregressionanalyses,see

Andoetal.

(2021

)and

Härdleetal.

(2016)

.

7

퐴1and퐴3areinterconnectedbecausebothassetsareheldintheportfolioofinvestor퐼3.Similarly,퐴1and퐴2arealsointerconnectedsincetheyareheldbyinvestors퐼2and퐼3.Infact,퐴1and퐴2areinterconnectedtoahigherextentthan퐴1and퐴3becausetheseassetssharetwooverlappinginvestors.

Thisasset-basednetworkallowsustoexamineimportantefectsofinterconnectedness

acrossfinancialassets.InFigure

1b,

interconnectednessbetween퐴1and퐴3capturesand

quantifiesthefollowingmechanism.Supposeashockhits퐴1(e.g.,downgradetojunk)andreducesitsmarketvalue.Thisshockwillthennegativelyimpacttheperformanceoftheportfoliosofallinvestors,퐼1,퐼2,and퐼3sincetheyallhold퐴1.Investorswillbeforcedtore-balancetheirportfoliostoraisemorecapitalorliquidity(e.g.,inthecaseofmutualfunds,tomeetredemptions)andthere-balancingwilltriggerachangeinholdingsofboth퐴2and퐴3becausethere-balancinginvestorsalsohold퐴2(퐼2and퐼3)and퐴3(퐼1).

InFigure

1b,

ourmeasureofinterconnectednessbetween퐴1and퐴2isstrongerthanthatbetween퐴1and퐴3becausetwoinvestors(퐼2and퐼3)holdtheseassetsasopposedtojustoneinvestorfor퐴1and퐴3.Thisnetworkfeatureimpliesthatthesameinitialshockon퐴1(and/or퐼2and/or퐼3)willlikelyspilloverto퐴2toagreaterextentthanitwillto퐴3,sinceboth퐼2and퐼3willre-balancetheirportfoliosasopposedtojustoneinvestor(퐼3)re-balancinginthecaseof퐴1and퐴3.

Noticethatthenotionofoverlappinginvestorsforabondis,however,diferentthanthesheernumberofinvestorsholdingthebond.InFigure

1b,

퐴1isheldbythehighestnumberofinvestors(퐼1,퐼2,and퐼3),followedby퐴2,whichisheldbytwoinvestors(퐼2and퐼3).However,퐴1hasthesamenumberofoverlappinginvestors—anddegreeofinterconnectedness—as퐴2.Thisarisesbecauseoutofthethreeinvestorsholding퐴1,oneinvestor(퐼1)doesnotinvestinanyotherassets,therebyeliminatingitspropensityto“overlap”withotherinvestors.Ingeneral,aswehaveillustratedinthisexample,itispossiblethatassetswithfewerinvestorsaremoreinterconnected(havemoreoverlappinginvestors)thanotherassetswithmorein-vestors.

Inwhatfollows,wedescribeournotionoftheasset-basednetworkinmoredetailandhighlightthenetworkmeasureusedintheanalysis.

8

2.1.NetworkofFinancialAssetsandInstitutions

Westartbydenotingthenetworkoffinancialassetsandfinancialinstitutionsas푄=(퐴,퐼,E),where퐴=퐴1,퐴2,...,퐴푆isthesetofnodescorrespondingtofinancialassets(corpo-ratebondsonly,inourcase),퐼=퐼1,퐼2,...,퐼푁representsthesetoffinancialinstitutions,andEisa푆×푁matrixrepresentingtheamount,퐸푖,푘,heldby퐼푘in퐴푖:

퐼1

퐼2

···

퐼푁

퐴1

퐸11

퐸12

···

퐸1푁

1

푉퐴

(1)

퐴푆

퐸푆1

퐸푆2

···

퐸푆푁

푉퐴

1

푉퐼

2

푉퐼

···

푉퐼

Summingacrosscolumnsgivesthetotalamountofsecurity푖heldbythesystem(in-vestorsinourdata),푉푖퐴,knownasthestrengthofthenetwork:

푉푖퐴=퐸푖,푘,(2)

andsummingacrossrowsproducesthetotalamountinvestedbyinvestor푘inallassets,푉.

Dependingonthescopeoftheanalysis,퐸푖,푘couldbenormalizedbythetotalissuedamountofasset푖outstandingorby푉푖퐴.

O

WedefineasEthecorrespondingadjacencymatrix

9

퐼1

퐼2

···

퐼푁

퐴1

O

퐸11

O

퐸12

···

O

퐸1푁

퐷퐴

1

(3)

퐴푆

퐸푆1

퐸푆2

···

퐸푆푁

퐷퐴

퐷퐼

1

퐷퐼

2

···

퐷퐼

O

wherethegenericelement퐸푖,푘=1if퐸푖,푘>푞andzerootherwise.Theparameter푞denotesathresholdandintraditionalnetworkanalysis푞=0

.7

Similartobefore,thesumacrosscolumnsgivesthetotalnumberoffinancialinstitutions

holdingsecurity푖,퐷,knownasnetworkdegree,

퐷퐸푘,(4)

andthesumacrossrowsgeneratesthetotalnumberofassetsinvestor푘hasinvestedin,퐷.

2.2.Asset-basedNetworkofInvestorSimilarity

Thenetworkwefocusoninthispaperisderivedfromthenetworkoffinancialassetsandfinancialinstitutions푄describedintheprevioussectionandcapturesinterconnectednessamongassetsbasedonwhethertheassetsbelongtothesameportfolios.

Wedefinethenetworkoffinancialassetsas푂퐴=(퐴,P퐴),where퐴={퐴1,퐴2,...,퐴푆}representsthesetofassets,andP퐴isthematrixmeasuringsimilaritiesofassetsintermsofinvestors.Severaldistancemeasuresexisttoquantifysimilarities(see,

Newman,

2010;

Delpinietal.,

2013;

Baruccaetal.,

2021;

Brunettietal.,

2023)

.Inthispaper,weusethenotion

7Giventherichnessofourdata,wecouldalsoadopt푞>0toselectthestrongestlinksamongnodes.

10

ofcosinesimilarity(ordistance)tomeasureinterconnectednessbetweenanypairofassets푖

and푗∈{1,...,푆}:

푁OO

Ⅱ퐸푖ⅡⅡ퐸푗Ⅱ

푃(5)

O

whereⅡ퐸푖Ⅱisthenormofthevectorofinvestorsholdingasset푖(see,Getmanskyetal.,2016;

Baruccaetal.,

2021

)and푃,thecosinesimilarity,capturesthedistancebetweentwonon-

zerovectorsofaninner-productspace

.8

Finally,foreachasset푖,weaggregateitspair-wiseinterconnectednesswithallotherassets푗in푆where푗≠푖and푖,푗∈{1,...,푆}toproduceanasset-levelmeasureofintercon-nectednessinthisnetwork:

Wenormalizeasset-levelinterconnectednessby(푆一1)*푁,where푆isthetotalnumberofassetsand푁isthetotalnumberofinvestors,toaccountforthefactthatthenumberoffinancialassetsandinstitutionschangeovertimeinourdata.

8Therecanbealternativedefinitionsofsimilarity.Oneoptionistousesimplecountsofthenumberof

OO

portfoliostwoassetsarepartofandhenceusethefollowingdefinitionfor푃퐴:푃퐴=퐸(퐸)T.Anotheroptionistocomputethesemeasuresusingtheparamountsheldbyinvestors푘asafractionoftheamountoutstandingofassets푘,therebycapturinganintensivemarginmeasureofinvestorsimilarity.Inthiscase,wedivideeachelement퐸푖,푘from(

3

)by퐼푠푠푢푒푎푚표푢푛푡표푢푡푠푡푎푛푑푖푛푔푖,andusethisnewadjacencymatrixdirectlytocomputesimilaritymeasures푃퐴.Wetestedtheaforementionedtwoalternativemeasuresandfoundthattheresultsweresimilartothoseusingcosinesimilarityontheextensivemarginofinvestors’holdings.Yetanothermeasure

ofsimilaritycanbederivedfromthenotionofEuclideandistance,namely,푃퐸푘一퐸,푘

However,wedidnotusethismeasureinouranalysisduetothesparsityofthenetworkinoursample.

11

2.3.AnExample:HowShocksPropagateThroughanAssetsNetwork

Anexamplemayhelptoexplaintheseconcepts.Considerthenetworkbelowconsistingofonlythreeassetsandthreeinvestors,wheretheentriesintheleftmatrixrepresentthe

dollaramountofeachassetheldbyeachinvestor.Thisnetworkcanberepresentedbythe。

adjacencymatrixE푒푥푎푚푝푙푒ontheright:

퐴3001퐴3001

Thetop-leftcellofthematrixE푒푥푎푚푝푙푒isequalto1becauseinvestor퐼1hasasset퐴1inherportfolio,while0in푐푒푙푙(2,1)indicatesthatinvestor퐼1hasnotinvestedinasset퐴2.Usingequation(

5

),wecanthencomputethecosinesimilaritymetricforanytwopairsofassets:

퐴30.580.71-

Accordingly,followingequation(

6

),thevectorofinterconnectednessmeasurescorrespond-

ingtoPis:

Themagnitudesofasset-levelinterconnectednessshownin퐼퐶indicatethat퐴2,

hasthehighestlevelofinterconnectednessinthenetwork,followedby퐴1and퐴3,whichhasthelowestinterconnectedness.Wehighlightthatthattheinterconnectednessmeasurecapturesanon-linearaspectofthenetworkbeyondthesimplenumberoffirmsinvestingin

12

eachasset,i.e.,theassets’degreeinthebipartitegraph.Forexample,although퐴1isheldbyallinvestorsand퐴2isonlyheldbytwoinvestors,퐴2isthemostcentralnodeinthisnetwork.퐴2’scentralitygivesrisetoahigherasset-levelinterconnectednessrelativeto퐴1.

Whichassetexperiencestheinitialshockplaysafundamentalrole

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论