2021-2022学年辽宁省大连市达标名校中考三模数学试题含解析_第1页
2021-2022学年辽宁省大连市达标名校中考三模数学试题含解析_第2页
2021-2022学年辽宁省大连市达标名校中考三模数学试题含解析_第3页
2021-2022学年辽宁省大连市达标名校中考三模数学试题含解析_第4页
2021-2022学年辽宁省大连市达标名校中考三模数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年辽宁省大连市达标名校中考三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°2.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4 B. C.12 D.3.“a是实数,”这一事件是()A.不可能事件 B.不确定事件 C.随机事件 D.必然事件4.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高()A.-4℃ B.4℃ C.8℃ D.-8℃5.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=06.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为()A.3 B.4 C. D.57.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B.C. D.8.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.9.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是(

)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m10.下列各式计算正确的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.12.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.13.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.14.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.15.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.16.一个凸多边形的内角和与外角和相等,它是______边形.三、解答题(共8题,共72分)17.(8分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?18.(8分)化简:(x+7)(x-6)-(x-2)(x+1)19.(8分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.20.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.21.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?22.(10分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)23.(12分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.24.已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.2、D【解析】分析:由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,∵△ABC是等边三角形,点D是BC边上的中点,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于点P,此时DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故选D.点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.3、D【解析】是实数,||一定大于等于0,是必然事件,故选D.4、C【解析】

根据题意列出算式,计算即可求出值.【详解】解:根据题意得:6-(-2)=6+2=8,

则室内温度比室外温度高8℃,

故选:C.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解题的关键.5、D【解析】试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.考点:根的判别式;一元二次方程的定义.6、B【解析】

连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.【详解】连接DF,∵四边形ABCD是矩形∴在中,故选:B.【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.7、D【解析】

此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.8、D【解析】

本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.9、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将1.11111111134用科学记数法表示,故选C.考点:科学记数法10、C【解析】

解:A.2a与2不是同类项,不能合并,故本选项错误;B.应为,故本选项错误;C.,正确;D.应为,故本选项错误.故选C.【点睛】本题考查幂的乘方与积的乘方;同底数幂的乘法.二、填空题(本大题共6个小题,每小题3分,共18分)11、或【解析】

过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【详解】如图所示,过点A作AG⊥BC,垂足为G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,AD=,当BD=4时,DG=2,AD=,∴AD的长为或,故答案为:或.【点睛】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.12、【解析】

由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.【详解】∵六边形ABCDEF是正六边形,

∴∠AOB=60°,

∴△OAB是等边三角形,OA=OB=AB=2,

设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

∴∴S阴影=S△OAB-S扇形OMN=故答案为【点睛】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.13、【解析】如图,连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,CF=DF=CD=AB=1,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,再利用勾股定理解答即可.14、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差为:.点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.15、2.【解析】

由tan∠CBD==设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【详解】解:在Rt△BCD中,∵tan∠CBD==,

∴设CD=3a、BC=4a,

则BD=AD=5a,

∴AC=AD+CD=5a+3a=8a,

在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,

解得:a=或a=-(舍),

则BD=5a=2,

故答案为2.【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.16、四【解析】

任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设边数为n,根据题意,得(n-2)•180=360,解得n=4,则它是四边形.故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.三、解答题(共8题,共72分)17、男生有12人,女生有21人.【解析】

设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1)×=男生的人数

,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:,解得:.答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.18、2x-40.【解析】

原式利用多项式乘以多项式法则计算,去括号合并即可.【详解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.19、(1)y=;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.试题解析:(1)∵反比例函数y=(m≠0)的图象过点A(1,1),∴1=∴m=1.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).∴,解得:,∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=1,PC×1+PC×2=1.∴PC=2,∴点P的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S△ACP+S△BCP列方程是关键.20、(1)证明见解析;(2)CE=1.【解析】

(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.

(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,

∵OB=OE,

∴∠OBE=∠OEB,

∵BE平分∠ABC.

∴∠OBE=∠EBC,

∴∠OEB=∠EBC,

∴OE∥BC,

∵∠ACB=90°,

∴∠OEA=∠ACB=90°,

∴AC是⊙O的切线.

(2)解:过O作OH⊥BF,

∴BH=BF=3,四边形OHCE是矩形,

∴CE=OH,

在Rt△OBH中,BH=3,OB=5,

∴OH==1,

∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.21、1860分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收问卷的概率是;(4)第4天收回问卷获奖率,第6天收回问卷获奖率.∵,∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.22、1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用23、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【解析】

设动车组列车的平均速度为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论