山西省太原市第四十八中2025年全国卷Ⅱ数学试题高考模拟题解析(版)含解析_第1页
山西省太原市第四十八中2025年全国卷Ⅱ数学试题高考模拟题解析(版)含解析_第2页
山西省太原市第四十八中2025年全国卷Ⅱ数学试题高考模拟题解析(版)含解析_第3页
山西省太原市第四十八中2025年全国卷Ⅱ数学试题高考模拟题解析(版)含解析_第4页
山西省太原市第四十八中2025年全国卷Ⅱ数学试题高考模拟题解析(版)含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市第四十八中2025年全国卷Ⅱ数学试题高考模拟题解析(精编版)注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.2.设是等差数列的前n项和,且,则()A. B. C.1 D.23.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A. B. C. D.4.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A. B. C.24 D.5.若,则的虚部是()A. B. C. D.6.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.637.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D.1208.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.9.设是虚数单位,复数()A. B. C. D.10.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()A.1 B.2 C.3 D.411.下列函数中既关于直线对称,又在区间上为增函数的是()A.. B.C. D.12.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.14.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.15.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.16.如图,直线是曲线在处的切线,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.18.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.19.(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.20.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.21.(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)22.(10分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求证:平面PDE⊥平面PAC;(Ⅱ)求直线PC与平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B本题主要考查正负角的定义以及弧度制,属于基础题.2.C【解析】

利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C本小题主要考查等差数列的性质,属于基础题.3.A【解析】

根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数图象关于轴对称图象关于对称时,单调递减时,单调递增又且,即本题正确选项:本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.4.A【解析】

推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解:在四面体中,为等边三角形,边长为6,,,,,,分别取的中点,连结,则,且,,,,平面,平面,,四面体的体积为:.故答案为:.本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.5.D【解析】

通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.6.D【解析】

根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.7.C【解析】

试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用.8.A【解析】

令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.9.D【解析】

利用复数的除法运算,化简复数,即可求解,得到答案.【详解】由题意,复数,故选D.本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.10.B【解析】

设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;对于②,连结,,在中,,而,是的中点,所以,②正确;对于③由②可知,在中,,连结,易知,而在中,,,即,又,面,平面平面,③正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;,,,,,;,;异面直线与所成角为,,故.④不正确.故选:.本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.11.C【解析】

根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,,所以不关于直线对称,则错误;B中,,所以在区间上为减函数,则错误;D中,,而,则,所以不关于直线对称,则错误;故选:C.本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.12.B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,,由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.14.【解析】

由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.15.【解析】

依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【详解】解:依题意可得、、、四点共圆,所以因为,所以,,所以三角形为正三角形,则,,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,,且面面,面所以面,所以外接球的半径所以故答案为:本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.16..【解析】

求出切线的斜率,即可求出结论.【详解】由图可知直线过点,可求出直线的斜率,由导数的几何意义可知,.故答案为:.本题考查导数与曲线的切线的几何意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)米.【解析】

(1)过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.(2)根据(1)有,再设,求导分析函数的单调性与最值即可.【详解】解:过点作于点则,在中,,,由正弦定理得:,,,,,因为,化简得,令,,且,因为,故令即,记,当时,单调递增;当时,单调递减,又,当时,取最大值,此时,的最大值为米.本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.18.(1);(2).【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析:(1)当时,.解不等式,得.因此,的解集为.(2)当时,,当时等号成立,所以当时,等价于.①当时,①等价于,无解.当时,①等价于,解得.所以的取值范围是.考点:不等式选讲.19.(1),;(2);(3)不能,证明见解析【解析】

(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),,曲线在点处的切线方程为,,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,,,解得,当时,对任意,,,,,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,,则关于的方程有三个不同的实根,等价于函数有三个零点,,当时,,记,则,在单调递增,,即,,在单调递增,至多有一个零点;当时,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程不可能有三个不同的实根.本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.20.(1);.;(2)【解析】

(1)根据题意,知,且,令和即可求出,,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,,且,当时,,则,当时,,,由已知可得,且,∴的通项公式:.(2)设,则,所以,,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.21.(1);(2)2个,证明见解析【解析】

(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1°当时,在上单调递减,时,使得,与条件矛盾;2°当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;而时,,要使恒成立,故.(2)原问题转化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论