




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市华山中学2024-2025学年高三第三次质量考评试卷数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则()A. B. C. D.2.下列四个图象可能是函数图象的是()A. B. C. D.3.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(
)A. B. C. D.4.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.5.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.6.已知,则下列不等式正确的是()A. B.C. D.7.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是()A. B.4 C.2 D.8.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2339.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.10.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A. B. C.4 D.211.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度12.已知向量,是单位向量,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设数列为等差数列,其前项和为,已知,,若对任意都有成立,则的值为__________.14.在数列中,已知,则数列的的前项和为__________.15.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.16.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,,求的值.18.(12分)贫困人口全面脱贫是全面建成小康社会的标志性指标.党的十九届四中全会提出“坚决打赢脱贫攻坚战,建立解决相对贫困的长效机制”对当前和下一个阶段的扶贫工作进行了前瞻性的部署,即2020年要通过精准扶贫全面消除绝对贫困,实现全面建成小康社会的奋斗目标.为了响应党的号召,某市对口某贫困乡镇开展扶贫工作.对某种农产品加工生产销售进行指导,经调查知,在一个销售季度内,每售出一吨该产品获利5万元,未售出的商品,每吨亏损2万元.经统计,两市场以往100个销售周期该产品的市场需求量的频数分布如下表:市场:需求量(吨)90100110频数205030市场:需求量(吨)90100110频数106030把市场需求量的频率视为需求量的概率,设该厂在下个销售周期内生产吨该产品,在、两市场同时销售,以(单位:吨)表示下一个销售周期两市场的需求量,(单位:万元)表示下一个销售周期两市场的销售总利润.(1)求的概率;(2)以销售利润的期望为决策依据,确定下个销售周期内生产量吨还是吨?并说明理由.19.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?20.(12分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.21.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.(1)求曲线,的直角坐标方程;(2)若点A,B为曲线上的两个点且,求的值.22.(10分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
集合是一次不等式的解集,分别求出再求交集即可【详解】,,则故选本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.2.C【解析】
首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.3.A【解析】=,当时时,单调递减,时,单调递增,且当,当,
当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.4.D【解析】
根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.5.A【解析】
由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.6.D【解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.7.B【解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,
,
当且仅当三点共线时,取“=”号,∴的最小值为.
故选:B.本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.8.C【解析】
计算得到Ac,bca【详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.9.D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.10.D【解析】
设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.11.B【解析】
由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论.【详解】根据已知函数其中,的图象过点,,可得,,解得:.再根据五点法作图可得,可得:,可得函数解析式为:故把的图象向左平移个单位长度,可得的图象,故选B.本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题.12.C【解析】
设,根据题意求出的值,代入向量夹角公式,即可得答案;【详解】设,,是单位向量,,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由已知条件得出关于首项和公差的方程组,解出这两个量,计算出,利用二次函数的基本性质求出的最大值及其对应的值,即可得解.【详解】设等差数列的公差为,由,解得,.所以,当时,取得最大值,对任意都有成立,则为数列的最大值,因此,.故答案为:.本题考查等差数列前项和最值的计算,一般利用二次函数的基本性质求解,考查计算能力,属于中等题.14.【解析】
由已知数列递推式可得数列的所有奇数项与偶数项分别构成以2为公比的等比数列,求其通项公式,得到,再由求解.【详解】解:由,得,,则数列的所有奇数项与偶数项分别构成以2为公比的等比数列.,..故答案为:.本题考查数列递推式,考查等差数列与等比数列的通项公式,训练了数列的分组求和,属于中档题.15.【解析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【详解】根据题中的程序框图可得:,执行循环体,,不满足条件,执行循环体,,此时,满足条件,退出循环,输出的值为.故答案为:本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.16.【解析】
利用正弦定理边化角可得,从而可得,进而求解.【详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,,从而,则.本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.18.(1);(2)吨,理由见解析【解析】
(1)设“市场需求量为90,100,110吨”分别记为事件,,,“市场需求量为90,100,110吨”分别记为事件,,,由题可得,,,,,,代入,计算可得答案;(2)可取180,190,200,210,220,求出吨和吨时的期望,比较大小即可.【详解】(1)设“市场需求量为90,100,110吨”分别记为事件,,,“市场需求量为90,100,110吨”分别记为事件,,,则,,,,,,;(2)可取180,190,200,210,220,当时,当时,.,时,平均利润大,所以下个销售周期内生产量吨.本题考查离散型随机变量的期望,是中档题.19.每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.20.(1)(2)【解析】
(1)由数列是等差数列,所以,解得,又由,解得,即可求得数列的通项公式;(2)由(1)得,利用乘公比错位相减,即可求解数列的前n项和.【详解】(1)由题意,数列是等差数列,所以,又,,由,得,所以,解得,所以数列的通项公式为.(2)由(1)得,,,两式相减得,,即.本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC GUIDE 98-6:2021 EN Uncertainty of measurement - Part 6: Developing and using measurement models
- 【正版授权】 IEC TS 60695-1-14:2017 RU Fire hazard testing - Part 1-14: Guidance on the different levels of power and energy related to the probability of ignition and fire in low voltag
- 文化创意产业园区合作共建协议
- 应急知识考试试题及答案
- 音乐老师考试试题及答案
- 医院价格考试试题及答案
- 六一入学仪式活动方案
- 六一宣传拍摄活动方案
- 六一怀旧聚会活动方案
- 六一晚会活动策划方案
- 生物基可降解地膜行业深度调研及发展项目商业计划书
- 出租车租凭合同协议书
- 《税务风险文献综述》
- 公司业务提成方案
- 《数学归纳法》 优秀奖 教学课件
- ANSIESD S20.202021 中英文对照版
- 投入的主要施工机械计划
- GB-T 19639.2-2014 通用阀控式铅酸蓄电池 第2部分:规格型号
- 公司财政资金财务管理办法
- 《数据采集与预处理》教学教案(全)
- DVD在线租赁的分配问题
评论
0/150
提交评论