版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.2.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1 B.2 C.3 D.43.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是()A. B. C. D.4.设,则复数的模等于()A. B. C. D.5.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.26.已知向量,若,则实数的值为()A. B. C. D.7.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)()A.3.132 B.3.137 C.3.142 D.3.1478.已知是第二象限的角,,则()A. B. C. D.9.已知,,,则,,的大小关系为()A. B. C. D.10.已知实数,则下列说法正确的是()A. B.C. D.11.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A. B. C. D.12.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.展开式的第5项的系数为_____.14.已知正项等比数列中,,则__________.15.某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为__________.16.若,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知都是大于零的实数.(1)证明;(2)若,证明.18.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.19.(12分)已知函数f(x)=x(1)讨论fx(2)当x≥-1时,fx+a20.(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.21.(12分)已知数列的通项,数列为等比数列,且,,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.22.(10分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.2.C【解析】
逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.【详解】①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.②由题意知.因为当时,,又,所以在上恒成立,所以函数在上为单调递减函数,正确.③由题意知,当时,,此时在上为增函数,不合题意,故.令,解得.因为在上不单调,所以在上有解,需,解得,正确.④令,得.根据函数的单调性,在上的最大值只可能为或.因为,,所以最大值为64,结论错误.故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.3.B【解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.4.C【解析】
利用复数的除法运算法则进行化简,再由复数模的定义求解即可.【详解】因为,所以,由复数模的定义知,.故选:C【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.5.C【解析】
由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.6.D【解析】
由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.7.B【解析】
结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:.故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题8.D【解析】
利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.9.D【解析】
构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.10.C【解析】
利用不等式性质可判断,利用对数函数和指数函数的单调性判断.【详解】解:对于实数,,不成立对于不成立.对于.利用对数函数单调递增性质,即可得出.对于指数函数单调递减性质,因此不成立.故选:.【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.11.B【解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(∈),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.12.A【解析】
依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.70【解析】
根据二项式定理的通项公式,可得结果.【详解】由题可知:第5项为故第5项的的系数为故答案为:70.【点睛】本题考查的是二项式定理,属基础题。14.【解析】
利用等比数列的通项公式将已知两式作商,可得,再利用等比数列的性质可得,再利用等比数列的通项公式即可求解.【详解】由,所以,解得.,所以,所以.故答案为:【点睛】本题考查了等比数列的通项公式以及等比中项,需熟记公式,属于基础题.15.60【解析】
根据样本容量及各组人数比,可求得C组中的人数;由组中甲、乙二人均被抽到的概率是可求得C组的总人数,即可由各组人数比求得总人数.【详解】三组人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则三组抽取人数分别.设组有人,则组中甲、乙二人均被抽到的概率,∴解得.∴该部门员工总共有人.故答案为:60.【点睛】本题考查了分层抽样的定义与简单应用,古典概型概率的简单应用,由各层人数求总人数的应用,属于基础题.16.【解析】
因为,所以,又,所以,则,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)答案见解析.(2)答案见解析【解析】
(1)利用基本不等式可得,两式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【详解】(1)两式相加得(2)由(1)知于是,.【点睛】本题考查了基本不等式的应用,属于基础题.18.(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系.点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理.存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备.(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性.19.(1)见解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-1e+1恒成立.当x>-1时,a≤xe【详解】解法一:(1)f①当a≤0时,x(-∞-1(-1,+∞)f-0+f(x)↘极小值↗所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)单调递增.②当a>0时,f'(x)=0的根为x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,-1),(lna,+∞)上单调递增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,lna),(-1,+∞)上单调递增,在综上:当a≤0时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增;当0<a<1e时,f(x)在(-∞,lna),自a=1e时,f(x)在当a>1e时,f(x)在(-∞,-1),(ln(2)因为xex-ax-a+1≥0当x=-1时,0≤-1当x>-1时,a≤x令g(x)=xex设h(x)=e因为h'(x)=e即hx=e又因为h0=0,所以g(x)=xex则g(x)min=g(0)=1综上,a的取值范围为-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'当a≤0时,g'(x)≥0,则g(x)在所以g(x)≥g(-1)=-1当0<a≤1时,令h(x)=e因为h'(x)=2ex+x又因为h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘极小值↗g==-e当a>1时,g(0)=-a+1<0,不满足题意.综上,a的取值范围为-∞,1.【点睛】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.20.(1)(2)【解析】
(1)利用正弦定理化简已知条件,由此求得的值,进而求得的大小.(2)利用正弦定理和两角差的正弦公式,求得的表达式,进而求得的取值范围.【详解】(1)由题设知,,即,所以,即,又所以.(2)由题设知,,即,又为锐角三角形,所以,即所以,即,所以的取值范围是.【点睛】本小题主要考查利用正弦定理解三角形,考查利用角的范围,求边的比值的取值范围,属于中档题.21.(1);(2).【解析】
(1)根据,,成等差数列以及为等比数列,通过直接对进行赋值计算出的首项和公比,即可求解出的通项公式;(2)的通项公式符合等差乘以等比的形式,采用错位相减法进行求和.【详解】(1)数列为等比数列,且,,成等差数列.设数列的公比为,,,解得(2),,,,.【点睛】本题考查等差、等比数列的综合以及错位相减法求和的应用,难度一般.判断是否适合使用错位相减法,可根据数列的通项公式是否符合等差乘以等比的形式来判断.22.(1)见解析(2)不存在,见解析【解析】
(1)求出函数的导数,通过讨论的范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代技术服务费合同1
- 工程装修合同范本2篇
- 新版房屋回购协议完整版
- 著作权使用合同范本
- 2024年度承包合同的工程描述和承包方式3篇
- 精美的课件教学课件
- 门面房合同范本
- 物理化学 第12章 独立子系统的统计热力学
- 种植收购合同红薯
- 人教版九年级化学绪言化学使世界变得更加绚丽多彩分层作业课件
- 可编辑公章模板
- 诗词大会训练题库(九宫格)课件
- 《铁道概论》考试复习题库400题(含答案)
- DB15T 1700.1-2019“蒙字标”认证通用要求 农业生产加工领域
- 部编版八年级初二语文上册第六单元教材分析及全部教案(定稿;共7课)
- 妇产科学课件:子宫内膜异位症(英文版)
- 卧式单面多轴钻孔组合机床液压系统的设计
- 铁路线路工起道作业指导书
- 酒店安全生产规范要求
- 幼儿园:幼儿园食育课程的五个实施途径
- 人教版(2019)选择性必修第二册Unit3Food and Culture Reading Cultureand Cuisine课件(13张ppt)
评论
0/150
提交评论