小学奥数立体图形_第1页
小学奥数立体图形_第2页
小学奥数立体图形_第3页
小学奥数立体图形_第4页
小学奥数立体图形_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE6第11讲立体图形各种涉及长方体、立方体、圆柱、圆锥等立体图形表面积与体积的计算问题,解题时考虑沿某个方向的投影常能发挥明显的作用.较为复杂的是与剪切、拼接、染色等相关联的立体几何问题.第六届:“华罗庚金杯”少年数学邀请赛初赛第12题(略有改动)1.用棱长是1厘米的立方块拼成如图11-1所示的立体图形,问该图形的表面积是多少平方厘米?【分析与解】显然,图11-1的图形朝上的面与朝下的面的面积相等,都等于3×3=9个小正方形的面积,朝左的面和朝右的面的面积也相等,等于7个小正方形的面积;朝前的面和朝后的面的面积也相等,都等于7个小正方形的面积,因此,该图形的表面积等于(9+7+7)×2=46个小正方形的面积,而每个小正方形面积为l平方厘米,所以该图形表面积是46平方厘米.2.如图11-2,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【分析与解】原来正方体的表面积为5×5×6=150.现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.3.如图11-3,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【分析与解】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1×l=1(平方米),所以表面积增加了9×2×1=18(平方米).原来正方体的表面积为6×1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).4.图11-4中是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?【分析与解】原正方体的表面积是4×4×6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是96+4×6=120平方厘米.5.图11-5是一个边长为2厘米的正方体.在正方体的上面的正中向下挖一个边长为1厘米的正方体小间;接着在小洞的底面正中再向下挖一个边长为厘米的小洞;第三个小洞的挖法与前两个相同,边长为厘米.那么最后得到的立体图形的表面积是多少平方厘米?【分析与解】因为每挖一次,都在原来的基础上,少了1个面,多出了5个面,即增加了4个面.所以,最后得到的立体图形的表面积是:【分析与解】长方体中,高+宽=+(365-5)=180,……①高+长=(405-5)=200,…………………②长+宽=(485-5)=240,…………………③②-①得长-宽=20,……………………④④+③得长=130,则宽=110,代入①得高=70,所以长方体得体积为:70×110×30=1001000(立方厘米)=1.001(立方米).14.有甲、乙、丙3种大小不同的正方体木块,其中甲的棱长是乙的棱长的,乙的棱长是丙的棱长的.如果用甲、乙、丙3种木块拼成一个体积尽可能小的大正体,每种至少用一块,那么最少需要这3种木块一共多少块?【分析与解】设甲的棱长为1,则乙的棱长为2,丙的棱长为3.显然,大正方体棱长不可能是4,否则无法放下乙和丙各一个.于是,大正方体的棱长至少是5.事实上,用甲、乙、丙三种木块可以拼成棱长为5的大正方体,其中丙种木块只能用1块;乙种木块至多用7块(使总的块数尽可能少);甲种木块需用:5×5×5-1×3×3×3-7×2×2×2=42(块).因此,用甲、乙、丙三种木块拼成体积最小的大正方体,至少需要这三种木块一共1+7+42=50(块).15.有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某划面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长;方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体;最多有多少个?【分析与解】一面染红的长方体,显然应将4×5的长方体染红,这时产生20个一面染成红色的小正方体,个数最多.二面染红的长方体,显然应将两个4×5的长方体染红,这时产生40个一面染成红色的小正方体,个数最多.三面染红的长方体,显然应将4×5,4×5,4×3的面染红,于是产生4×(5+5+3-4)=36个一面染成红色的小正方体,其他方法得出的一面染成红色的正方体均少于36个.四面染红的长方体,显然应将4×5,4×5,4×3,4×3的面染红,产生4×(5+5+3+3-2×4)=32个一面染成红色的正方体,其他方法得到的一面染成红色的小正方体均少于32个.五面染红的长方体,应只留一个3×5的面不染,这时就产生(3-2)×(5-2)+(4-1)×(5+5+3+3-2×4)=27个一面染成红色的小正方体,其他染法得到的一面染成红色的小正方体均少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论