版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆七中2025届高三第四次高考适应性考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足(是虚数单位),则()A. B. C. D.2.已知复数满足,则()A. B. C. D.3.如图,在中,,且,则()A.1 B. C. D.4.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A. B. C. D.5.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)6.设全集U=R,集合,则()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}7.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-38.函数在上的图象大致为()A. B. C. D.9.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种 B.20种 C.22种 D.24种10.设,且,则()A. B. C. D.11.己知集合,,则()A. B. C. D.12.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若奇函数满足,为R上的单调函数,对任意实数都有,当时,,则________.14.设函数满足,且当时,又函数,则函数在上的零点个数为___________.15.已知数列为正项等比数列,,则的最小值为________.16.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,(Ⅰ)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(Ⅱ)商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)(ⅰ)求的分布列;(ⅱ)若,求的数学期望的最大值.18.(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.19.(12分)等差数列中,,,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,,成等比数列,若有,请求出的值;若没有,请说明理由.20.(12分)在四棱锥中,是等边三角形,点在棱上,平面平面.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值.21.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?22.(10分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.2.A【解析】
由复数的运算法则计算.【详解】因为,所以故选:A.本题考查复数的运算.属于简单题.3.C【解析】
由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.4.A【解析】
每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.5.C【解析】
首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.6.C【解析】
解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.7.D【解析】
设,,设:,联立方程得到,计算得到答案.【详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.8.C【解析】
根据函数的奇偶性及函数在时的符号,即可求解.【详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.9.B【解析】
分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.10.C【解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.11.C【解析】
先化简,再求.【详解】因为,又因为,所以,故选:C.本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.12.B【解析】
根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得k的值,可得要求的双曲线的方程.【详解】∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为故选:B本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据可得,函数是以为周期的函数,令,可求,从而可得,代入解析式即可求解.【详解】令,则,由,则,所以,解得,所以,由时,,所以时,;由,所以,所以函数是以为周期的函数,,又函数为奇函数,所以.故答案为:本题主要考查了换元法求函数解析式、函数的奇偶性、周期性的应用,属于中档题.14.1【解析】
判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,,,当时,,,函数先增后减。当时,,,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1.故答案为:.本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.15.27【解析】
利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.【详解】由等比数列的性质可知,则,.当且仅当时取得最小值.故答案为:.本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.16.36【解析】
先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)0.288(Ⅱ)(ⅰ)见解析(ⅱ)数学期望的最大值为280【解析】
(Ⅰ)根据题意,设购买该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;(Ⅱ)(ⅰ)依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;(ⅱ)由题意知,,解得,根据的分布列,得出的数学期望,结合,即可算出的最大值.【详解】解:(Ⅰ)设购买该商品的3位顾客中,选择分2期付款的人数为,则,则,故购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.(Ⅱ)(ⅰ)依题意,的取值为200,250,300,350,400,,,,,的分布列为:2002503003504000.16(ⅱ),由题意知,,,,,又,即,解得,,,当时,的最大值为280,所以的数学期望的最大值为280.本题考查独立重复事件和二项分布的应用,以及离散型分布列和数学期望,考查计算能力.18.(Ⅰ)(II)【解析】
(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;(Ⅱ)因点与点关于坐标原点对称,可得的面积是的面积的两倍,再由当时,的面积取到最大值,可得,进而可得原点到直线的距离,再由点到直线的距离公式,以及(I)的结果,即可求解.【详解】(I)由,得,则化简整理,得;(Ⅱ)因点与点关于坐标原点对称,故的面积是的面积的两倍.所以当时,的面积取到最大值,此时,从而原点到直线的距离,又,故.再由(I),得,则.又,故,即,从而,即.本题主要考查直线与椭圆的位置关系,以及椭圆的简单性质,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于中档试题.19.(1)见解析,或;(2)存在,.【解析】
(1)满足题意有两种组合:①,,,②,,,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,,成等比数列,即,解方程是否存在正整数解即可.【详解】(1)由题意可知:有两种组合满足条件:①,,,此时等差数列,,,所以其通项公式为.②,,,此时等差数列,,,所以其通项公式为.(2)若选择①,.则.若,,成等比数列,则,即,整理,得,即,此方程无正整数解,故不存在正整数,使,,成等比数列.若选则②,,则,若,,成等比数列,则,即,整理得,因为为正整数,所以.故存在正整数,使,,成等比数列.本题考查等差数列的通项公式及前n项和,涉及到等比数列的性质,是一道中档题.20.(1)证明见解析(2)(3)【解析】
(1)取中点为,连接,由等边三角形性质可得,再由面面垂直的性质可得,根据平行直线的性质可得,进而求证;(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,由点在棱上,可设,即可得到,再求得平面的法向量,进而利用数量积求解;(3)设,,则,求得,,即可求得点的坐标,再由与平面的法向量垂直,进而求解.【详解】(1)证明:取中点为,连接,因为是等边三角形,所以,因为且相交于,所以平面,所以,因为,所以,因为,在平面内,所以,所以.(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,则,,,,因为在棱上,可设,所以,设平面的法向量为,因为,所以,即,令,可得,即,设直线与平面所成角为,所以,可知当时,取最大值.(3)设,则有,得,设,那么,所以,所以.因为,,所以.又因为,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专业婚礼顾问服务合同版B版
- 2024合同范本伸缩缝施工合同
- 2024年对外机械设备销售协议版
- 2024年家装全包服务具体协议模板版B版
- 2024年工程项目协议具体订立
- 2024年度住宅小区物业管理服务补充条款合同版
- 2024年夏季临时兼职服务协议书
- 2024 年工程代理协议标准格式版
- 2024年度办公室开荒清洁服务协议版B版
- 2024年广告投放合同:互联网平台广告宣传
- 四川省凉山州西昌市2023-2024学年高一上学期期末考试物理试题
- 汶川大地震地震报告
- 骨科护士专科知识培训课件
- 犯罪的心理预防
- 外科手术中的术中出血控制
- 煤矿安全规程
- 幼儿园法制副校长的角色与职责
- 学校食堂厨房规范化操作程序
- 第5课互联网接入课件2023-2024学年浙教版(2023)初中信息技术七年级上册
- 2024年北京国投泰康信托有限公司招聘笔试参考题库含答案解析
- 审计学(第5版)课后习题答案 第七章 审计抽样练习题
评论
0/150
提交评论