版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.72.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1 B.-1 C.8l D.-813.函数在上为增函数,则的值可以是()A.0 B. C. D.4.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线5.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.6.如图,设为内一点,且,则与的面积之比为A. B.C. D.7.已知奇函数是上的减函数,若满足不等式组,则的最小值为()A.-4 B.-2 C.0 D.48.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.9.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.10.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.双曲线x2a2A.y=±2x B.y=±3x12.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.14.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.15.从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________.16.若椭圆:的一个焦点坐标为,则的长轴长为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.18.(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.19.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,20.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.21.(12分)已知中,,,是上一点.(1)若,求的长;(2)若,,求的值.22.(10分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.2.B【解析】
根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.3.D【解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.4.C【解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.5.D【解析】
利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.6.A【解析】
作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【详解】如图,作交于点,则,由题意,,,且,所以又,所以,,即,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.7.B【解析】
根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.8.B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.9.B【解析】
模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.10.B【解析】
利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.11.A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a212.B【解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
作出图像,设点,根据已知可得,,且,可解出,计算即得.【详解】如图,设,圆心坐标为,可得,,,,,解得,,即的长是.故答案为:【点睛】本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想.14.1【解析】
直接根据分层抽样的比例关系得到答案.【详解】分层抽样的抽取比例为,∴抽取学生的人数为6001.故答案为:1.【点睛】本题考查了分层抽样的计算,属于简单题.15.【解析】
基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率.【详解】解:从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:,,,,,,,.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为.故答案为.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.16.【解析】
由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或由表示的是椭圆,则,所以,则椭圆方程为所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对的两个值进行取舍.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)只有①②成立,;(Ⅱ).【解析】
(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.(Ⅱ)得到,得到函数值域.【详解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,则,,,若①③成立,则,,不合题意,若②③成立,则,,与③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由题意得,,所以函数的值域为.【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.18.(1);(2)见解析.【解析】
(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可.(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可.【详解】(Ⅰ)设椭圆的半焦距为,由椭圆的离心率为知,,∴椭圆的方程可设为.易求得,∴点在椭圆上,∴,解得,∴椭圆的方程为.(Ⅱ)当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由(Ⅰ)知,,,∴.当过点且与圆相切的切线斜率存在时,可设切线的方程为,,∴,即.联立直线和椭圆的方程得,∴,得.∵,∴,,∴.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.【点睛】本道题考查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难.19.(1)列联表见解析,有把握;(2)分布列见解析,.【解析】
(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.【详解】解:(1)由题意得下表:男女合计冰雪迷402060非冰雪迷202040合计6040100的观测值为所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为012【点睛】本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题.20.(1)乙同学正确(2)分布列见解析,【解析】
(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:“理想数据”有3个,故“理想数据”的个数的取值为:.,,于是“理想数据”的个数的分布列【点睛】本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,属于中档题.21.(1)(2)【解析】
(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社工站项目书撰写培训
- 沙龙活动主持人培训
- 幼儿园急救安全教育培训
- 二零二四年品牌授权经营合同4篇
- 2024版工程代理与居间合同2篇
- 2024年度特许经营合同:某连锁品牌的特许经营协议2篇
- 《爱心主题班会》课件
- 庆六一亲子活动方案
- 2024版甲方乙方合作开展教育培训项目合同3篇
- 房装修合同范本
- 2024-2030年中国家禽饲养行业发展前景预测和投融资分析报告
- 2024-2030年中国净菜加工行业市场营销模式及投资规模分析报告
- 2024-2025学年广东省佛山市九年级(上)期中数学试卷(含答案)
- 湖南省长沙市雅礼教育集团2024-2025学年高一上学期期中考试数学试题 含解析
- 第二章 空气、物质的构成(选拔卷)(原卷版)
- 云南省昆明市昆十中教育集团2024-2025学年七年级上学期期中测试地理试卷(无答案)
- 2024广西壮族自治区公路发展中心社会招聘601人高频难、易错点500题模拟试题附带答案详解
- 华强北商圈市场分析:华强北商圈之市场分析全面分析华强北商圈现状、规划及发展趋势
- 统编版2024年新版道德与法治七年级上册第二单元《成长的时空》单元整体教学设计
- 国开(河北)2024年《商务谈判实务》形成性考核1-4答案
- 血栓患者护理
评论
0/150
提交评论