4.4二项式定理(第1课时)课件高二上学期数学选择性_第1页
4.4二项式定理(第1课时)课件高二上学期数学选择性_第2页
4.4二项式定理(第1课时)课件高二上学期数学选择性_第3页
4.4二项式定理(第1课时)课件高二上学期数学选择性_第4页
4.4二项式定理(第1课时)课件高二上学期数学选择性_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.4

二项式定理第1课时二项式定理第4章计数原理湘教版

数学

选择性必修第一册课标要求1.能用计数原理证明二项式定理;2.理解二项式定理及其特征,能用通项公式解决与二项展开式有关的简单问题.基础落实·必备知识一遍过重难探究·能力素养速提升目录索引

学以致用·随堂检测促达标基础落实·必备知识一遍过知识点二项式定理及相关的概念二项式定理概念

a,b可以是数,也可以是代数式公式(a+b)n=____________________________________

(0≤r≤n,r∈N,n∈N+)称为二项式定理

二项展开式(0≤r≤n,r∈N,n∈N+)二项式系数各项的系数

(0≤r≤n,r∈N,n∈N+)叫作二项式系数

仅与指数n有关的组合数,与a,b无关二项式定理二项展开式的通项

叫作二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:Tr+1=(其中0≤r≤n,r∈N,n∈N+)备注在二项式定理中,如果设a=1,b=x,则得到公式:(1+x)n=

(0≤r≤n,r∈N,n∈N+)名师点睛1.二项展开式的特征:(1)展开式共有(n+1)项;(2)各项的次数都等于二项式的幂指数n;(3)字母a的幂指数按降幂排列,从第一项开始,次数由n逐项减1直到为0,字母b的幂指数按升幂排列,从第一项开始,次数由0逐项加1直到为n.2.二项展开式的通项的特点:(1)表示(a+b)n的展开式的第(r+1)项,该项的二项式系数为

;(2)字母b的次数与二项式系数的组合数的上标相同;(3)a和b的次数之和为n.过关自诊1.判断正误.(正确的画√,错误的画×)(1)(a+b)n展开式中共有n项.(

)(3)(a-b)n与(a+b)n的二项展开式的二项式系数相同.(

)2.二项展开式中某项的二项式系数与该项的系数相同吗?××√提示不一定相同.二项展开式中第(r+1)项的二项式系数是

,该系数只与n,r的值有关,而展开式的系数是除字母外的其余部分,它不但包含正负号而且还与a,b的系数有关.重难探究·能力素养速提升探究点一二项展开式的理解分析

由于(1)中二项式的指数为5,且为两项的和,因此可利用指数幂的运算法则及二项式定理的特征展开,对于(2)结合已知关系式,可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解.规律方法

1.对于二项式的展开可以按照二项式定理进行.展开时注意二项式定理的结构特征.2.对较复杂的二项式,有时先化简再展开会更简便.3.对于化简含多个式子的和的问题时,首先根据公式的特点、项数、各项幂指数的规律以及各项的系数,考虑是否满足二项式的特征,逆用二项式定理求解.变式训练1(1)求(a+2b)4的展开式;探究点二利用二项式定理求待定项及系数【例2】已知在()n的展开式中,第6项为常数项.(1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.分析

利用二项展开式的通项及第6项为常数项计算出n的值,结合n的值,依次求(2),(3).解

(1)由二项展开式的通项知,展开式中第r+1项为

∵第6项为常数项,∴r=5,且n-5×2=0,∴n=10.规律方法

求二项展开式的特定项的常用方法求二项展开式的特定项问题,实质是考查通项

的特点,一般需要建立方程求r,再将r的值代回通项求解,注意r的取值范围(r∈N,0≤r≤n).常见方法如下:项的特征求解方法第m项令r+1=m,直接代入通项常数项令通项中字母的指数为0,建立方程有理项令通项中字母的指数为整数,建立方程[提醒]二项展开式的通项是展开式的第r+1项.二项式定理问题中,使用通项

,解题时要注意通项表示的是第r+1项,而不是第r项,通项中a和b的位置不能颠倒.变式训练2已知(2x+)n展开式中前三项的二项式系数和为16.(1)求n的值;(2)求展开式中含x2的项的系数.探究点三

形如(a+b)m(c+d)n(m,n∈N+)的展开式的项

【例3】求(1-x)5(1-2x)6展开式中x3的系数.规律方法

求形如(a+b)m(c+d)n(m,n∈N+)的展开式中与特定项相关的量的步骤:第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.变式训练3求(x+3)(x-1)7的二项展开式中x5的系数.解

(x+3)(x-1)7的展开式中x5项由两部分相加得到.(x+3)中的常数项与(x-1)7展开式中的x5项;(x+3)中的x项与(x-1)7展开式中的x4项.探究点四二项式定理在整除问题中的应用【例4】试判断7777-1能否被19整除.分析由于76是19的倍数,因此可将7777转化为(76+1)77,并用二项式定理展开.规律方法

利用二项式定理证明或判断整除问题的一般步骤:(1)变形,将幂底数写成两数之和,其中一个数是除数的倍数;(2)展开,将变形后的式子按二项式定理展开;(3)判断,判断或证明展开式中各项均能被除数整除;(4)得出结论.变式训练4[2024甘肃白银高二期末](1)求415除以15的余数;(2)证明:32n+3+72n-27(n∈N+)能被96整除.本节要点归纳1.知识清单:二项式定理、二项展开式通项、二项式系数.2.方法归纳:利用二项式通项求展开式的特定项,分类讨论形如(a+b)m(c+d)n(m,n∈N+)的展开式中的特定项.3.注意事项:是二项展开式的第r+1项,二项展开式的系数与二项式系数是不同的概念,只有(a+b)m中二项展开式的系数与二项式系数才相等.学以致用·随堂检测促达标123456789101112131415161718A级必备知识基础练A1.[2024甘肃白银高二期末]在

的展开式中,x的系数是(

)A.-56 B.56C.8 D.-321234567891011121314151617182.在(x-)6的二项展开式中,常数项为(

)A.256 B.240

C.192

D.160B1234567891011121314151617183.S=(x-1)4+4(x-1)3+6(x-1)2+4x-3,则S=(

)A.x4

B.x4+1 C.(x-2)4

D.x4+4A1234567891011121314151617184.若(1+3x)n(n∈N+)的二项展开式中,第三项的二项式系数为6,则第四项的系数为(

)A.4 B.27

C.36

D.108D1234567891011121314151617185.(1-)(1+x)6展开式中x2的系数为(

)A.-5 B.5

C.15

D.30A1234567891011121314151617186.在(x2-)9的二项展开式中,第4项的二项式系数是

,第4项的系数是

.

84123456789101112131415161718-21234567891011121314151617188.已知()n的二项展开式中,第2项与第4项的二项式系数之比为1∶12.(1)求正整数n的值;(2)求二项展开式中的常数项.解

(1)∵第2项与第4项的二项式系数之比为1∶12,123456789101112131415161718B级关键能力提升练9.使(3x+)n(n∈N+)的展开式中含有常数项的最小的n为(

)A.4 B.5

C.6 D.7B12345678910111213141516171810.已知(1+ax)(1+x)5的展开式中x3的系数为15,则a的值为(

)C12345678910111213141516171811.(多选题)若(x+)6展开式中的常数项为15,则实数m的值可能为(

)A.1 B.-1 C.2 D.-2AB123456789101112131415161718ACD12345678910111213141516171813.(多选题)若(x-)n的展开式中含x2的项,则n的取值可能为(

)A.6 B.8

C.10

D.14BD12345678910111213141516171814.对于(+x3)n(n∈N+),有以下四种判断:①存在n∈N+,展开式中有常数项;②对任意n∈N+,展开式中没有常数项;③对任意n∈N+,展开式中没有x的一次项;④存在n∈N+,展开式中有x的一次项.其中正确的是(

)A.①③

B.②③ C.②④

D.①

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论