版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,则集合的子集个数为()A. B. C. D.2.已知平面向量,满足,,且,则()A.3 B. C. D.53.复数().A. B. C. D.4.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.115.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是()A. B. C. D.6.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.7.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最高B.天津的往返机票平均价格变化最大C.上海和广州的往返机票平均价格基本相当D.相比于上一年同期,其中四个城市的往返机票平均价格在增加8.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.9.执行下面的程序框图,则输出的值为()A. B. C. D.10.()A. B. C. D.11.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元 B.7000元 C.7500元 D.8000元12.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)14.已知内角的对边分别为外接圆的面积为,则的面积为_________.15.已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,使得,则椭圆的离心率取值范围为_________.16.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.18.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.19.(12分)已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.20.(12分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..(1)求证:;(2)求平面与平面所成锐二面角的余弦值.21.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.22.(10分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题2.B【解析】
先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.3.A【解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.4.A【解析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.5.D【解析】
利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.6.A【解析】
若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.7.D【解析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.8.B【解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.9.D【解析】
根据框图,模拟程序运行,即可求出答案.【详解】运行程序,,
,,,,,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.10.D【解析】
利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.11.D【解析】
设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.12.C【解析】
根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为:.【点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.14.【解析】
由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,从而有,于是可得三角形边长,可得面积.【详解】设外接圆半径为,则,由正弦定理,得,∴,,.故答案为:.【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键.15.【解析】
设,设出直线AB的参数方程,利用参数的几何意义可得,由题意得到,据此求得离心率的取值范围.【详解】设,直线AB的参数方程为,(为参数)代入圆,化简得:,,,,存在点,使得,,即,,,,故答案为:【点睛】本题主要考查了椭圆离心率取值范围的求解,考查直线、圆与椭圆的综合运用,考查直线参数方程的运用,属于中档题.16.3【解析】
设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0),联立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【详解】设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐标(0,1),∴B的坐标为(,k•1),即B(,),因此AB•,同理可得:AC•.∴Rt△ABC的面积为SAB•AC•令t,得S.∵t2,∴S△ABC.当且仅当,即t时,△ABC的面积S有最大值为.解之得a=3或a.∵a时,t2不符合题意,∴a=3.故答案为:3.【点睛】本题考查了椭圆内三角形面积的最值问题,意在考查学生的计算能力和转化能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)证明见解析【解析】
(1)根据条件可得,进而得到,即可得到椭圆方程;(2)设直线的方程为,联立,分别表示出直线和直线斜率,相加利用根与系数关系即可得到.【详解】解:(1)圆与有且仅有两个交点且都在轴上,所以,又,,解得,故椭圆的方程为;(2)设直线的方程为,联立,整理可得,则,解得,设点,,则,,所以,故直线与直线的斜率互为相反数.【点睛】本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程,属于中档题.18.(1)(2)【解析】
(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入①,得,,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的应用,属于中档题.19.(1);(2)存在,且方程为或.【解析】
(1)依题意列出关于a,b,c的方程组,求得a,b,进而可得到椭圆方程;(2)联立直线和椭圆得到,要使以为直径的圆过椭圆的左顶点,则,结合韦达定理可得到参数值.【详解】(1)直线的一般方程为.依题意,解得,故椭圆的方程式为.(2)假若存在这样的直线,当斜率不存在时,以为直径的圆显然不经过椭圆的左顶点,所以可设直线的斜率为,则直线的方程为.由,得.由,得.记,的坐标分别为,,则,,而.要使以为直径的圆过椭圆的左顶点,则,即,所以,整理解得或,所以存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点,直线的方程为或.【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.20.(1)证明见解析;(2).【解析】
(1)证明,得到平面,得到证明.(2)以点为坐标原点,建立如图所示的空间直角坐标系,平面的一个法向量为,平面的一个法向量为,计算夹角得到答案.【详解】(1)因为四边形是菱形,且,所以是等边三角形,又因为是的中点,所以,又因为,,所以,又,,,所以,又,,所以平面,所以,又因为是菱形,,所以,又,所以平面,所以.(2)由题意结合菱形的性质易知,,,以点为坐标原点,建立如图所示的空间直角坐标系,则,,,,,设平面的一个法向量为,则:,据此可得平面的一个法向量为,设平面的一个法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店协议价格合同的签订技巧
- 离职证明合同解除
- 房屋买卖合同中介代理词
- 农村生态建设合同
- 停车场管理服务合同
- 卡车司机聘用劳动合同
- 房地产 专题报告-成都-严森-蓝光雍锦系产品研究
- 糖果行业的价格竞争与波动分析
- DB4107T 502-2024 专利申请快速预审服务规范
- 口腔科利用PDCA循环降低颌面外科患者胃管自拔率品管圈QCC活动书面报告
- (零模)徐州市2024~2025学年上学期高三期中考试 英语试卷(含答案)
- 动脉瘤栓塞术术后护理
- 四川公安基础知识模拟5
- 英语KET官方样题Test1- Test 2
- 财务管理考试试题及答案
- 【课件】第七单元能源的合理利用与开发新版教材单元分析-九年级化学人教版(2024)上册
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 水库除险加固工程实施方案
- 5.1平行与垂直(进阶练习)2024-2025学年人教版数学四年级上册
- 8《安全记心上》第1课时 教学设计-2024-2025学年道德与法治三年级上册统编版
- 2024年人教版小学六年级数学(上册)期中考卷附答案
评论
0/150
提交评论