版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年四川省攀枝花市高考摸底测试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,,则()A. B. C. D.2.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.43.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.4.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.4005.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.6.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()A. B.C. D.7.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.8.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是()A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强9.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7]10.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A. B. C. D.11.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是()A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格12.已知集合,则全集则下列结论正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,,则=_______.14.的展开式中的系数为__________(用具体数据作答).15.已知平面向量,,且,则向量与的夹角的大小为________.16.已知为抛物线:的焦点,过作两条互相垂直的直线,,直线与交于、两点,直线与交于、两点,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).(1)应抽查男生与女生各多少人?(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:时间(小时)[0,1](1,2](2,3](3,4](4,5](5,6]频率0.050.200.300.250.150.05若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?男生女生总计每周平均体育锻炼时间不超过2小时每周平均体育锻炼时间超过2小时总计附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87918.(12分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)计算表中十二周“水站诚信度”的平均数;(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.19.(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.(Ⅰ)判断点与直线的位置关系并说明理由;(Ⅱ)设直线与曲线的两个交点分别为,,求的值.20.(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,,,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.21.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.22.(10分)在,角、、所对的边分别为、、,已知.(1)求的值;(2)若,边上的中线,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,,故单调递增:∴,当,设,,又,,即,故.故选:D本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.2.D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D本题考查导数的几何意义,考查运算求解能力,是基础题3.B【解析】
设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.4.B【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.本题考查等差数列的基本量计算以及前项和,属于基础题.5.D【解析】
利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.6.D【解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.【详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,,所以选项成立;,比离对称轴远,可得,选项成立;,,可知比离对称轴远,选项成立;,符号不定,,无法比较大小,不一定成立.故选:.本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.B【解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B本题主要考查了由平面向量线性运算的结果求参数,属于中档题.8.D【解析】
根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.9.B【解析】
作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.10.A【解析】
建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线,设点,所以由得,即,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.11.D【解析】
先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,,,则有,所以D正确.故选:D此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.12.D【解析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用求出公差,结合等差数列的通项公式可求.【详解】设公差为,因为,所以,即.所以.故答案为:本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.14.【解析】
利用二项展开式的通项公式可求的系数.【详解】的展开式的通项公式为,令,故,故的系数为.故答案为:.本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题.15.【解析】
由,解得,进而求出,即可得出结果.【详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为.都答案为:.本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题.16.16.【解析】由题意可知抛物线的焦点,准线为设直线的解析式为∵直线互相垂直∴的斜率为与抛物线的方程联立,消去得设点由跟与系数的关系得,同理∵根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离∴,同理∴,当且仅当时取等号.故答案为16点睛:(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径;(2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)男生人数为人,女生人数55人.(2)列联表答案见解析,有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【解析】
(1)求出男女比例,按比例分配即可;(2)根据题意结合频率分布表,先求出二联表中数值,再结合公式计算,利用表格数据对比判断即可【详解】(1)因为男生人数:女生人数=900:1100=9:11,所以男生人数为,女生人数100﹣45=55人,(2)由频率频率直方图可知学生每周平均体育锻炼时间超过2小时的人数为:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均体育锻炼时间超过2小时的女生人数为37人,联表如下:男生女生总计每周平均体育锻炼时间不超过2小时71825每周平均体育锻炼时间超过2小时383775总计4555100因为3.892>3.841,所以有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.本题考查分层抽样,独立性检验,熟记公式,正确计算是关键,属于中档题.18.(Ⅰ);(Ⅱ);(Ⅲ)两次活动效果均好,理由详见解析.【解析】
(Ⅰ)结合表中的数据,代入平均数公式求解即可;(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周,则有两周为“高诚信度”事件为,利用列举法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率计算公式求解即可;(Ⅲ)结合表中的数据判断即可.【详解】(Ⅰ)表中十二周“水站诚信度”的平均数.(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周均为“高诚信度”事件为,总的基本事件为共15种,事件所包含的基本事件为共10种,由古典概型概率计算公式可得,.(Ⅲ)两次活动效果均好.理由:活动举办后,“水站诚信度'由和看出,后继一周都有提升.本题考查平均数公式和古典概型概率计算公式;考查运算求解能力;利用列举法正确列举出所有的基本事件是求古典概型概率的关键;属于中档题、常考题型.19.(Ⅰ)点在直线上;见解析(Ⅱ)【解析】
(Ⅰ)直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;(Ⅱ)根据直线的参数方程中参数的几何意义可得.【详解】(Ⅰ)直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;(Ⅱ)直线的参数方程为(为参数),曲线的普通方程为,将直线的参数方程代入曲线的普通方程得,设两根为,,所以,,故与异号,所以,,所以.本题考查在极坐标参数方程中方程互化,还考查了直线的参数方程中参数的几何意义,属于中档题.20.(1)证明见解析(2)(3)【解析】
根据折叠图形,,由线面垂直的判定定理可得平面,再根据平面,得到.(2)根据,以为坐标原点,为轴建立空间直角坐标系,根据,可知,,表示相应点的坐标,分别求得平面与平面的法向量,代入求解.设所求几何体的体积为,设为高,则,表示梯形BEFD和ABD的面积由,再利用导数求最值.【详解】(1)证明:不妨设与的交点为与的交点为由题知,,则有又,则有由折叠可知所以可证由平面平面,则有平面又因为平面,所以....(2)解:依题意,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自动售货机产品供应链分析
- 工业物联网行业相关项目经营管理报告
- 人造琥珀制小雕像产品供应链分析
- 手表修理或保养行业相关项目经营管理报告
- 健身指导课程行业相关项目经营管理报告
- 光电转换器产品供应链分析
- 电源电缆项目运营指导方案
- 废水处理工程行业相关项目经营管理报告
- 纺织品清棉机细分市场深度研究报告
- 危险物质仓库储存行业营销策略方案
- 2024-2030年中国盾构机行业发展趋势与投资策略建议报告
- 2024年重庆高考化学试题卷(含答案解析)
- 坚持人民至上以人民为中心心得体会三篇
- 2024年新人教版数学七年级上册 3.2 求代数式的值 教学课件
- 2025届四川省绵阳市高三第一次调研测试物理试卷含解析
- 初中足球运球技术教案
- 2024-2030年中国原油行业发展趋势及发展前景研究报告
- 2024年秋季学期新人教版生物七年级上册课件 第三章 微生物 2.3.4 病毒
- 04S519小型排水构筑物(含隔油池)图集
- 统编版(2024)道德与法治七年级上册:第1-13课全册教案(共26课时)
- 2024-2030年中国砖瓦行业发展分析及发展前景与投资研究报告
评论
0/150
提交评论