版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市新抚区2023-2024学年八年级数学第一学期期末质量跟踪监视模拟试题质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各数中为无理数的是()A. B. C. D.2.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.93.若长度分别为的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.84.若将一副三角板按如图所示的方式放置,则下列结论:①;②如果,则有;③如果,则有;④如果,必有;其中正确的有()A.①②③ B.①②④ C.②③④ D.①②③④5.9的算术平方根是()A.3 B.-3 C. D.以上都对6.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.247.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=()A.45° B.54° C.56° D.66°8.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数的个数共有()A.2个 B.3个 C.4个 D.5个9.8的平方根是()A.4 B.±4 C.2 D.10.在化简分式的过程中,开始出现错误的步骤是()A.B.C.D.二、填空题(每小题3分,共24分)11.勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.如图所示,是一棵由正方形和含角的直角三角形按一定规律长成的勾股树,树的主干自下而上第一个正方形和第一个直角三角形的面积之和为,第二个正方形和第二个直角三角形的面积之和为,…,第个正方形和第个直角三角形的面积之和为.设第一个正方形的边长为1.请解答下列问题:(1)______.(2)通过探究,用含的代数式表示,则______.12.分解因式:x-x3=____________.13.命题“如果,则,”的逆命题为____________.14.平面上有三条直线两两相交且不共点,那么平面上到此三条直线距离相等的点的个数是_____.15.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.16.已知:如图,在平面直角坐标系xOy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点将△AOB绕点O顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.17.已知x2-2(m+3)x+9是一个完全平方式,则m=____________.18.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为_____cm时,线段CQ+PQ的和为最小.三、解答题(共66分)19.(10分)尺规作图:如图,已知.(1)作的平分线;(2)作边的垂直平分线,垂足为.(要求:不写作法,保留作图痕迹).20.(6分)先化简,再求值:其中21.(6分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.22.(8分)问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).23.(8分)如图,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.24.(8分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.25.(10分)如图1,已知直线AO与直线AC的表达式分别为:和.(1)直接写出点A的坐标;(2)若点M在直线AC上,点N在直线OA上,且MN//y轴,MN=OA,求点N的坐标;(3)如图2,若点B在x轴正半轴上,当△BOC的面积等于△AOC的面积一半时,求∠ACO+∠BCO的大小.26.(10分)如图,在中,,点是边上的动点,连接,以为斜边在的下方作等腰直角三角形.(1)填空:的面积等于;(2)连接,求证:是的平分线;(3)点在边上,且,当从点出发运动至点停止时,求点相应的运动路程.
参考答案一、选择题(每小题3分,共30分)1、C【分析】无理数就是无限循环小数,依据定义即可作出判断.【详解】A.是有理数,不符合题意;B.是有理数,不符合题意;C.是无限不循环小数,是无理数,正确;D.=2是整数,不符合题意;故选:C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.2、C【分析】首先根据Rt△ABC的勾股定理得出AB的长度,根据AM=AC得出BM的长度,然后根据BN=BC得出BN的长度,从而根据MN=BN-BM得出答案.【详解】∠ACB=90°,AC=40,CB=9AB===41又AM=AC,BN=BCAM=40,BN=9BM=AB-AM=41-40=1MN=BN-BM=9-1=8故选C考点:勾股定理3、C【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4、B【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:①∵∠CAB=∠EAD=90°,
∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,
∴∠1=∠3,故本选项正确.②∵∠2=30°,
∴∠1=90°-30°=60°,
∵∠E=60°,
∴∠1=∠E,
∴AC∥DE,故本选项正确.③∵∠2=30°,
∴∠3=90°-30°=60°,
∵∠B=45°,
∴BC不平行于AD,故本选项错误.④由∠2=30°可得AC∥DE,从而可得∠4=∠C,故本选项正确.故选B.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.5、A【分析】根据算术平方根的定义解答即可.【详解】∵,∴9的算术平方根是3,故选:A.【点睛】此题考查算术平方根的定义:如果一个正数的平方等于a,那么这个正数即是a的算术平方根,熟记定义是解题的关键.6、A【分析】此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=2.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,即△DOE的周长为3.故选A【点睛】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.7、D【分析】根据三角形内角和定理求出∠ABD,根据角平分线的定义求出∠ABF,根据三角形的外角性质求出即可.【详解】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.【点睛】本题考查三角形内角和定理、角平分线的定义,解题的关键是熟记概念与定理并准确识图.8、A【解析】根据无理数的定义对每个数进行判断即可.【详解】在,1,,﹣,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)这六个数中,无理数有:,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)共2个.故选:A.【点睛】本题考查了无理数的定义,掌握无理数的定义以及判定方法是解题的关键.9、D【分析】直接根据平方根的定义进行解答即可解决问题.【详解】∵(±2)2=8,∴8的平方根是±2.故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10、B【分析】根据题意直接将四选项与正确的解题步骤比较,即可知错误的步骤.【详解】解:∵正确的解题步骤是:,∴开始出现错误的步骤是.故选:B.【点睛】本题主要考查分式的加减法,熟练掌握分式的加减法运算法则是解题的关键.二、填空题(每小题3分,共24分)11、(为整数)【分析】根据正方形的面积公式求出面积,再根据直角三角形三条边的关系运用勾股定理求出三角形的直角边,求出S1,然后利用正方形与三角形面积扩大与缩小的规律推导出公式.【详解】解:(1)∵第一个正方形的边长为1,
∴正方形的面积为1,
又∵直角三角形一个角为30°,
∴三角形的一条直角边为,另一条直角边就是,
∴三角形的面积为,
∴S1=;
(2)∵第二个正方形的边长为,它的面积就是,也就是第一个正方形面积的,
同理,第二个三角形的面积也是第一个三角形的面积的,
∴S2=()•,依此类推,S3=()••,即S3=()•,
Sn=(n为整数).故答案为:(1);(2)(为整数)【点睛】本题考查勾股定理的运用,正方形的性质以及含30°角的直角三角形的性质.能够发现每一次得到的新的正方形和直角三角形的面积与原正方形和直角三角形的面积之间的关系是解题的关键.12、x(1+x)(1-x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【详解】x−x3=x(1−x2)=x(1−x)(1+x).故答案为x(1−x)(1+x).【点睛】本题考查提取公因式法以及公式法分解因式,正确应用公式法是解题关键.13、若,则【分析】根据逆命题的定义即可求解.【详解】命题“如果,则,”的逆命题为若,,则故填:若,,则.【点睛】此题主要考查逆命题,解题的关键是熟知逆命题的定义.14、1【分析】根据角平分线性质的逆定理,结合三角形内角平分线和外角平分线作出图形即可解答.【详解】解:到三条直线的距离相等的点应该有A、B、C、D共1个,故答案为:1.【点睛】本题考查了角平分线性质的逆定理,掌握角平分线性质的逆定理是解题的关键.15、1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积.【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S△ACF=×1×1=1(cm1).故答案为1.【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键.16、【分析】根据y=x+3求出点A、B的坐标,得到OA、OB的值,即可求出点A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,代入求值即可.【详解】由=x+3,当y=0时,得x=-4,∴(﹣4,0),当x=0时,得y=3,∴B(0,3),∴OA=4,OB=3,∴OA′=OA=4,OB′=OB=3,∴A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,∴.解得.∴直线A′B′的解析式是.故答案为:.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,待定系数法求一次函数的解析式.17、-6或1.【解析】由题意得-2(m+3)=2,所以解得m=-6或1.18、1.【分析】连接AQ,依据等边三角形的性质,即可得到CQ=AQ,依据当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,即可得到BP的长.【详解】如图,连接AQ,∵等边△ABC中,BD为AC边上的中线,∴BD垂直平分AC,∴CQ=AQ,∴CQ+PQ=AQ+PQ,∴当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,此时,P为BC的中点,又∵等边△ABC的周长为18cm,∴BP=BC=×6=1cm,故答案为1.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(共66分)19、(1)图见解析;(2)图见解析【分析】(1)根据角平分线的尺规作图方法即可;(2)根据线段垂直平分线的尺规作图方法即可.【详解】(1)AF为∠BAC的平分线;(2)MN为AC的垂直平分线,点E为垂足.【点睛】本题考查了角平分线及线段垂直平分线的尺规作图方法,解题的关键是掌握相应的尺规作图.20、-2【分析】先利用完全平方式展开化简,再将x,y的值代入求解即可.【详解】解:原式=(+2x-2xy+y--y)=(-4xy+2x)=-2x+8y-4,代入得该式=-2.【点睛】本题主要考察整式化简,细心化简是解题关键.21、见解析【解析】试题分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NCD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.22、(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形,【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(2)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD=DE.证明:∵是等边三角形∴AB=BC,∵DF∥AC∴,∠BDF=∠BCA∴∴是等边三角形,∴DF=BD∵点D是BC的中点∴BD=CD∴DF=CD∵CE是等边的外角平分线∴∵是等边三角形,点D是BC的中点∴AD⊥BC∴∵∴在与中∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F∵是等边三角形∴AB=BC,∵DF∥AC∴∴∴是等边三角形,∴BF=BD∴AF=DC∵CE是等边的外角平分线∴∵∠ADC是的外角∴∵∴∠FAD=∠CDE在与中∴∴AD=DE;(3)如下图,是等边三角形.证明:∵∴∵CE平分∴CE垂直平分AD∴AE=DE∵∴是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.23、1.【解析】试题分析:由AB=4,BC=3,∠B=90°可得AC=2.可求得S△ABC;再由AC=2,AD=13,CD=4,可得△ACD为直角三角形,进而求得S△ACD,可求S四边形ABCD=S△ABC+S△ACD.解:在Rt△ABC中,AB=4,BC=3,则有AC==2.∴S△ABC=AB•BC=×4×3=3.在△ACD中,AC=2,AD=13,CD=4.∵AC2+CD2=22+42=139,AD2=132=139.∴AC2+CD2=AD2,∴△ACD为直角三角形,∴S△ACD=AC•CD=×2×4=6.∴S四边形ABCD=S△ABC+S△ACD=3+6=1.考点:勾股定理;勾股定理的逆定理.24、(1)证明见解析;(2)1.【分析】(1)直接利用旋转的性质可得AP=AQ,∠PAQ=60°,然后根据“SAS”证明△BAP≌△CAQ,结合全等三角形的性质得出答案;(2)由△APQ是等边三角形可得AP=PQ=3,∠AQP=60°,由全等的性质可得∠AQC=∠APB=110°,从而可求∠PQC=90°,然后根据勾股定理求PC的长即可.直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC==1.【点睛】本题考查了旋转的性质,等边三角形的性质与判定,全等三角形的判定与性质,勾股定理.证明△BAP≌△CAQ是解(1)的关键,证明∠PQC=90°是解(2)的关键.25、(1)A点的坐标为(4,2);(2)N的坐标为(),();(3)∠ACO+∠BCO=45°【分析】(1)利用直线AO与直线AC交点为A即可求解;(2)先求出MN的长,再设设M的坐标为(a,2a-6),则则N的坐标为(a,),表示出MN的长度解方程即可;(3)作∠GCO=∠BCO,把∠ACO+∠BCO转化成∠ACG。题目条件没出现具体角度,但结论又要求角度的,这个角度一定是一个特殊角,即∠ACG的度数一定是个特殊角;即∠ACG处于一个特殊的三角形中,于是有了作DE⊥GC的辅助线思路,运用勾股定理知识即可解答.【详解】(1)联立和得:解得A点的坐标为(4,2);(2)∵A点的坐标为(4,2)∴OA=,∴MN=OA=2,∵点M在直线AC上,点N在直线OA上,且MN//y轴,∴设M的坐标为(a,2a-6),则N的坐标为(a,),则存在以下两种情况:①当M在N点下方时,如图3,
则MN=-(2a-6)=2,解得a=,∴N点的坐标为();②当M在N点上方时,如图4,
则MN=(2a-6)-=2,解得a=,∴N点的坐标为();综上所述,N的坐标为(),()(3)∵△BOC与△AOC有相同的底边OC,∴当△BOC的面积等于△AOC的面积一半时,△BOC的高OB的长度是△AOC的高的一半,∴OB=2,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国泵一二级转子数据监测研究报告
- 2024至2030年中国对溴苯异丙酸数据监测研究报告
- 2024至2030年车用钥匙扣项目投资价值分析报告
- 2024至2030年广告烟灰缸项目投资价值分析报告
- 2024年船用电器配件项目可行性研究报告
- 2024年二苯氯甲烷项目可行性研究报告
- 2023年光刻胶专用化学品项目成效分析报告
- 河南省八市重点高中联盟2025届高二物理第一学期期末检测模拟试题含解析
- 河北省邢台三中2025届物理高三上期中监测试题含解析
- 上海市宝山区扬波中学2025届高三物理第一学期期末经典试题含解析
- 第一章第三节《氧化还原反应》第一课时高一上学期化学人教版(2019)必修第一册
- 高三政治月考试卷讲评
- 期中模拟测试卷1(试题)-2024-2025学年五年级上册数学(福建)
- 江苏省南通市2023-2024学年七上期中数学试题(解析版)
- 期中考试卷(试题)-2024-2025学年苏教版二年级数学上册
- 2024年全国企业员工全面质量管理知识竞赛题库(含答案)(共132题)
- 《国有企业采购操作规范》【2023修订版】
- 野生动物管理学智慧树知到答案章节测试2023年东北林业大学
- 对上好少先队活动课的五点建议
- 慢性病自我管理新ppt课件.ppt
- ProCAST学习操作教程ppt课件
评论
0/150
提交评论