2024-2025学年吉林省长春实验高中第二学期高三数学试题期中考试试题含解析_第1页
2024-2025学年吉林省长春实验高中第二学期高三数学试题期中考试试题含解析_第2页
2024-2025学年吉林省长春实验高中第二学期高三数学试题期中考试试题含解析_第3页
2024-2025学年吉林省长春实验高中第二学期高三数学试题期中考试试题含解析_第4页
2024-2025学年吉林省长春实验高中第二学期高三数学试题期中考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年吉林省长春实验高中第二学期高三数学试题期中考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面,,直线满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件2.如图,在中,点,分别为,的中点,若,,且满足,则等于()A.2 B. C. D.3.设(是虚数单位),则()A. B.1 C.2 D.4.计算等于()A. B. C. D.5.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④6.已知角的终边经过点P(),则sin()=A. B. C. D.7.等比数列的前项和为,若,,,,则()A. B. C. D.8.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为()A. B. C. D.9.已知分别为圆与的直径,则的取值范围为()A. B. C. D.10.已知集合,,若,则实数的值可以为()A. B. C. D.11.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.12.已知命题,那么为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,,则________.14.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.15.在中,内角所对的边分别是.若,,则__,面积的最大值为___.16.在平面直角坐标系中,点在曲线:上,且在第四象限内.已知曲线在点处的切线为,则实数的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a18.(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.19.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.20.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:分数段[50,60)[60,70)[70,80)[80,90)[90,100]人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:,其中.21.(12分)已知函数.(1)证明:当时,;(2)若函数有三个零点,求实数的取值范围.22.(10分)已知函数.当时,求不等式的解集;,,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

,是相交平面,直线平面,则“”“”,反之,直线满足,则或//或平面,即可判断出结论.【详解】解:已知直线平面,则“”“”,反之,直线满足,则或//或平面,“”是“”的充分不必要条件.故选:A.本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.2.D【解析】

选取为基底,其他向量都用基底表示后进行运算.【详解】由题意是的重心,,∴,,∴,故选:D.本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.3.A【解析】

先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.【详解】∵,∴.故选:A.本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题.4.A【解析】

利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A本小题主要考查诱导公式,考查对数运算,属于基础题.5.A【解析】

对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.6.A【解析】

由题意可得三角函数的定义可知:,,则:本题选择A选项.7.D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.8.B【解析】

根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】∵双曲线与的渐近线相同,且焦点在轴上,∴可设双曲线的方程为,一个焦点为,∴,∴,故的标准方程为.故选:B此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.9.A【解析】

由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题10.D【解析】

由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.考查描述法表示集合的定义,以及并集的定义及运算.11.B【解析】

由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.12.B【解析】

利用特称命题的否定分析解答得解.【详解】已知命题,,那么是.故选:.本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】

设等比数列的公比为,再根据题意用基本量法求解公比,进而利用等比数列项之间的关系得即可.【详解】设等比数列的公比为.由,得,解得.又由,得.则.故答案为:1本题主要考查了等比数列基本量的求解方法,属于基础题.14.【解析】

分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;【详解】如图,分别取,的中点,,连接,则易得,,,,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,可得,解得,.故该球的表面积为.故答案为:本题考查多面体的外接球的计算,属于中档题.15.1【解析】

由正弦定理,结合,,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1).1(2).本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.16.【解析】

先设切点,然后对求导,根据切线方程的斜率求出切点的横坐标,代入原函数求出切点的纵坐标,即可得出切得,最后将切点代入切线方程即可求出实数的值.【详解】解:依题意设切点,因为,则,又因为曲线在点处的切线为,,解得,又因为点在第四象限内,则,.则又因为点在切线上.所以.所以.故答案为:本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,本题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(I)an=2n-1,bn=【解析】

(I)直接利用等差数列,等比数列公式联立方程计算得到答案.(II)n2【详解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+本题考查了等差数列,等比数列,裂项求和,意在考查学生对于数列公式方法的综合应用.18.(1)(2)【解析】

(1)因为,可得,即可求得答案;(2)分别设、的斜率为和,切点,,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,进而求得的面积.【详解】(1),,解得,抛物线的方程为.(2)由题意可知,、的斜率都存在,分别设为和,切点,,过点的抛物线的切线:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切线的方程为,点到切线的距离为,,即的面积为.本题主要考查了求抛物线方程和抛物线中三角形面积问题,解题关键是掌握抛物线定义和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式19.(1)(2)证明见解析;定点坐标为【解析】

(1)由条件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)由得,.又∴,同理又∴∴∴∴∴∴,此时满足∴∴直线恒过定点涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.20.(1)见解析;(2)【解析】

(1)补充完整的列联表如下:合格不合格合计高一新生121426非高一新生18624合计302050则的观测值,所以有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关.(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,竞赛成绩不合格的有名学生,记为,从这5名学生中随机抽取2名学生的基本事件有:,共10种,这2名学生竞赛成绩都合格的基本事件有:,共3种,所以这2名学生竞赛成绩都合格的概率为.21.(1)见解析;(2)【解析】

(1)要证明,只需证明即可;(2)有3个根,可转化为有3个根,即与有3个不同交点,利用导数作出的图象即可.【详解】(1)令,则,当时,,故在上单调递增,所以,即,所以.(2)由已知,,依题意,有3个零点,即有3个根,显然0不是其根,所以有3个根,令,则,当时,,当时,,当时,,故在单调递减,在,上单调递增,作出的图象,易得.故实数的取值范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论