版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年福建省上杭县一中3月高三下学期第一次月考请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直2.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.3.定义在上的函数满足,则()A.-1 B.0 C.1 D.24.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件5.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A. B. C. D.86.若的展开式中的系数之和为,则实数的值为()A. B. C. D.17.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(
)A. B. C.或 D.或8.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.9.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,210.已知复数满足,(为虚数单位),则()A. B. C. D.311.已知数列的通项公式是,则()A.0 B.55 C.66 D.7812.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,若,则________.14.已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_______________.15.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.16.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.18.(12分)已知各项均为正数的数列的前项和为,且,(,且)(1)求数列的通项公式;(2)证明:当时,19.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.20.(12分)如图,在四棱锥中,底面是直角梯形且∥,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.21.(12分)已知,且满足,证明:.22.(10分)在中,角的对边分别为.已知,且.(1)求的值;(2)若的面积是,求的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.2.B【解析】
为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.3.C【解析】
推导出,由此能求出的值.【详解】∵定义在上的函数满足,∴,故选C.本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.4.A【解析】
首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:∵,∴可解得或,∴“”是“”的充分不必要条件.故选:A本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.5.A【解析】
由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,.故选:A.本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.6.B【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.7.D【解析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.8.D【解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.9.C【解析】
先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.10.A【解析】,故,故选A.11.D【解析】
先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.【详解】解:由题意得,当为奇数时,,当为偶数时,所以当为奇数时,;当为偶数时,,所以故选:D此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.12.A【解析】
由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率.弦过焦点时,可结合焦半径公式求解弦长.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
由题意先求得的值,可得,再令,可得结论.【详解】已知,,,,令,可得,故答案为:1.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题.14.【解析】
画出函数的图象,再画的图象,求出一个交点时的的值,然后平行移动可得有两个交点时的的范围.【详解】函数的图象如图所示:因为方程有且只有两个不相等的实数根,所以图象与直线有且只有两个交点即可,当过点时两个函数有一个交点,即时,与函数有一个交点,由图象可知,直线向下平移后有两个交点,可得,故答案为:.本题主要考查了方程的跟与函数的图象交点的转化,数形结合的思想,属于中档题.15.【解析】
过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.16.164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【详解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;则a4=+2+=5+8+3=16.故答案为:16,4.本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】
(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.【详解】(1)证明:取中点连接,由则,则,故,,平面,又平面,故平面平面(2)解法一:设分别为边的中点,则,(或补角)是异面直线与所成的角.设为边的中点,则,由知.又由(1)有平面,平面,所以为二面角的平面角,,设则在中,从而在中,,又,从而在中,因,,因此,异面直线与所成角的余弦值为.解法二:过点作交于点由(1)易知两两垂直,以为原点,射线分别为轴,轴,轴的正半轴,建立空间直角坐标系.不妨设,由,易知点的坐标分别为则显然向量是平面的法向量已知二面角为,设,则设平面的法向量为,则令,则由由上式整理得,解之得(舍)或,因此,异面直线与所成角的余弦值为.本题考查空间点、线、面位置关系,证明平面与平面垂直,考查空间角,涉及到二面角、异面直线所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.18.(1)(2)见证明【解析】
(1)由题意将递推关系式整理为关于与的关系式,求得前n项和然后确定通项公式即可;(2)由题意结合通项公式的特征放缩之后裂项求和即可证得题中的不等式.【详解】(1)由,得,即,所以数列是以为首项,以为公差的等差数列,所以,即,当时,,当时,,也满足上式,所以;(2)当时,,所以给出与的递推关系,求an,常用思路是:一是利用转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.19.(1)(2)(i)(ii)分布列见解析,【解析】
(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为.(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为.(ii),因此,.即的分布列为0123因此数学期望为.本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.20.(1);(2).【解析】
(1)分别取的中点为,易得两两垂直,以所在直线为轴建立空间直角坐标系,易得为平面的法向量,只需求出平面的法向量为,再利用计算即可;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险代理保证合同的解读与实践
- 糖尿病酮症酸中毒病例
- 《穿上美丽的花衣裳》课件
- 交通银行外汇商品房抵押贷款合同详解
- 机械设备买卖合同范本
- 《点菜流程》课件
- 古诗三首《饮湖上初晴后雨》 公开课一等奖创新教学设计
- 第五单元《乡土中国》之《乡土本色》批注式阅读任务式公开课一等奖创新教学设计统编版高中语文必修上册
- 八上第六单元大单元公开课一等奖创新教学设计
- 绿化水泵泄水常识培训
- 统编版(2024)七年级上册道德与法治第三单元《珍爱我们的生命》测试卷(含答案)
- 2024年新人教版道德与法治七年级上册全册教案(新版教材)
- 小学六年级数学100道题解分数方程
- 产前检查的操作评分标准
- 食堂油烟系统清洗服务投标方案
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 各航空公司机型介绍
- 2022年2022年高中物理《生活中的圆周运动》说课稿
- 三相变压器的参数测定实验报告
- 绕线机使用说明书
- 车务段三线建设经验材料
评论
0/150
提交评论