2023-2024学年湖南江永县重点名校中考数学最后一模试卷含解析_第1页
2023-2024学年湖南江永县重点名校中考数学最后一模试卷含解析_第2页
2023-2024学年湖南江永县重点名校中考数学最后一模试卷含解析_第3页
2023-2024学年湖南江永县重点名校中考数学最后一模试卷含解析_第4页
2023-2024学年湖南江永县重点名校中考数学最后一模试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南江永县重点名校中考数学最后一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6 B.()7 C.()6 D.()73.在平面直角坐标系中,点(2,3)所在的象限是(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限4.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105 B.2.6×102 C.2.6×106 D.260×1045.小宇妈妈上午在某水果超市买了16.5元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了25%,小宇妈妈又买了16.5元钱的葡萄,结果恰好比早上多了0.5千克.若设早上葡萄的价格是x元/千克,则可列方程()A. B.C. D.6.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为()A.20% B.11% C.10% D.9.5%7.“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是()A. B. C. D.8.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒9.如图所示是放置在正方形网格中的一个,则的值为()A. B. C. D.10.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.12.计算2x3·x2的结果是_______.13.已知二次函数,与的部分对应值如下表所示:…-101234……61-2-3-2m…下面有四个论断:①抛物线的顶点为;②;③关于的方程的解为;④.其中,正确的有___________________.14.函数y=115.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).16.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.17.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.三、解答题(共7小题,满分69分)18.(10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.19.(5分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?20.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.21.(10分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.22.(10分)解方程23.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.24.(14分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.【详解】解:∵若,是一元二次方程的两个不同实数根,∴,∴∴故选B.【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.2、A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.当n=9时,S9=()9﹣2=()6,故选A.考点:勾股定理.3、A【解析】

根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A【点睛】考核知识点:点的坐标与象限的关系.4、C【解析】

科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】260万=2600000=.故选C.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了0.5千克列方程即可.详解:设早上葡萄的价格是x元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.6、C【解析】

设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为.根据题意,得=1.解得,(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.7、C【解析】分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.故选C.点睛:考查函数的图象,正确理解题目的意思是解题的关键.8、B【解析】

设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.9、D【解析】

首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.10、C【解析】

解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】

根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.12、【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.故答案为:2x513、①③.【解析】

根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,其中,正确的有.①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.14、x>1【解析】试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足x-1≻0⇒x≻1考点:二次根式、分式有意义的条件点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.15、10海里.【解析】

本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.【详解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B点,∴∠C=30°,∴AB=AC•tan30°=30×=10海里.答:乙船的路程为10海里.故答案为10海里.【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.16、7秒或25秒.【解析】考点:勾股定理;等腰三角形的性质.专题:动点型;分类讨论.分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.解答:解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=12∴AD=AB分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.点评:本题利用了等腰三角形的性质和勾股定理求解.17、【解析】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣××=.故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.三、解答题(共7小题,满分69分)18、(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或.【解析】

(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;综上所述,满足条件的a的值为-3或.【点睛】本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.19、(1)12;(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是12(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】

(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.21、(1)=x2+7+(2)见解析【解析】

(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;当x=0时,取得最小值0,∴当x=0时,x2+7+最小值为1,即原式的最小值为1.22、x=-1.【解析】

解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x=-1检验:x=-1时,x-2≠0∴原方程的解是x=-1首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解23、(1)①∠BEF=60°;②AB'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.【解析】

(1)①当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=∠BEB′=×120°=60°;②依据AE=B′E,可得∠EAB′=∠EB′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,进而得出EF∥AB′;(2)由折叠可得,CF+B′F=CF+BF=BC=10,依据B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.【详解】(1)①当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=∠BEB′=×120°=60°,故答案为60;②AB′∥EF,证明:∵点E是AB的中点,∴AE=BE,由折叠可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,∴CF+B′F=C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论