河南省平顶山市叶县2022-2023学年九年级上学期期末数学试题(含答案解析)_第1页
河南省平顶山市叶县2022-2023学年九年级上学期期末数学试题(含答案解析)_第2页
河南省平顶山市叶县2022-2023学年九年级上学期期末数学试题(含答案解析)_第3页
河南省平顶山市叶县2022-2023学年九年级上学期期末数学试题(含答案解析)_第4页
河南省平顶山市叶县2022-2023学年九年级上学期期末数学试题(含答案解析)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省平顶山市叶县九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下列命题,其中是真命题的是()A.对角线互相垂直的四边形是平行四边形 B.有一个角是直角的四边形是矩形C.对角线互相平分的四边形是菱形 D.对角线互相垂直的矩形是正方形【答案】D【解析】【分析】分别根据平行四边形,矩形,菱形及正方形的判定定理进行判断即可.【详解】对角线互相平分的四边形是平行四边形,故A错误,不符合题意;有三个角是直角的四边形是矩形,故B错误,不符合题意;对角线互相垂直平分的四边形是菱形,故C错误,不符合题意;对角线互相垂直的矩形是正方形,故D正确,符合题意;故选:D.【点睛】本题考查了平行四边形,矩形,菱形及正方形的判定定理,熟练掌握知识点是解题的关键.2.关于二次函数,下列说法正确的是()A.函数图象的开口向下 B.函数图象的顶点坐标是C.该函数有最大值,最大值是5 D.当时,y随x的增大而增大【答案】D【解析】【分析】由抛物线的表达式和函数的性质逐一求解即可.【详解】解:对于y=(x-1)2+5,∵a=1>0,故抛物线开口向上,故A错误;顶点坐标为(1,5),故B错误;该函数有最小值,最小值是5,故C错误;当时,y随x的增大而增大,故D正确,故选:D.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.3.某校九年级学生,在学习“用频率估计概率”时,五个班级的同学做抛掷一枚硬币的试验,并将所得的试验数据整理如下表:试验班级抛掷次数n“正面向上”的次数m“正面向上”的频率九年级(1)班204810610.5181九年级(2)班404020480.5069九年级(3)班1000049790.4979九年级(4)班1200060190.5016九年级(5)班240001201205005下面有四个推断:①当抛掷次数是10000时,“正面向上”的次数是4979,所以“正面向上”的概率是0.4979;②当抛掷次数是12000时,“正面向上”的次数是6019,所以“正面向上”的概率是0.5016;③随着试验次数的增加,“正面向上”的频率总在0.5005附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5005;④若再次做此试验,则当抛掷次数为30000时,“正面向上”的频率一定是0.5005.其中合理的是()A.① B.② C.③ D.④【答案】C【解析】【分析】根据用频率估计概率以及频率和概率的概念判断.【详解】解:①当抛掷次数是1000时,“正面向上”的次数是4979,“正面向上”的频率是0.4979,但“正面向上”的概率不一定是0.4979,故本小题推断不合理;②当抛掷次数是1200时,“正面向上”的次数是6019,“正面向上”的频率是0.5016,但“正面向上”的概率不一定是0.5016,故本小题推断不合理;③随着试验次数的增加,“正面向上”的频率总在0.5005附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5005,故本小题推断合理;④若再次做此试验,则当抛掷次数为30000时,“正面向上”的频率不一定是0.5005,故本小题推断不合理;故选:C.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4.若关于x的一元二次方程有两个不相等的实数根,则a的取值范围是()A. B.且 C.且 D.【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a≠0,Δ=22-4a×(-1)=4+4a>0,再求出即可.【详解】解:∵关于x的一元二次方程ax2+2x-1=0有两个不相等的实数根,∴a≠0,Δ=22-4a×(-1)=4+4a>0,解得:a>-1且a≠0,故选:B.【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根.5.如图,中,,于点D,则下列比值:其中可以表示的有()A.4个 B.3个 C.2个 D.1个【答案】B【解析】【分析】本题主要考查了求角的余弦值,三角形内角和定理,根据余弦的定义可得在中,,在中,,利用三角形内角和定理证明,进而得到,据此可得答案.【详解】解:在中,,中,,∵,∴,∴,在中,,∴在中,可以表示的有,共3个,故选;B.6.沿正方体相邻的三条棱的中点截掉一个角,得到如图所示的几何体,则他的主视图是()A. B. C. D.【答案】D【解析】【分析】据主视图是从正面看到的图形判定即可.【详解】该几何体的主视图是,,故选:D.【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.7.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是()A.函数解析式为 B.蓄电池的电压是18VC.当时, D.当时,【答案】C【解析】【分析】将将代入求出U的值,即可判断A,B,D,利用反比例函数的增减性可判断C.【详解】解:设,将代入可得,故A错误;∴蓄电池的电压是36V,故B错误;当时,,该项正确;当当时,,故D错误,故选:C.【点睛】本题考查反比例函数的实际应用,掌握反比例函数的图象与性质是解题的关键.8.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AFBE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m【答案】B【解析】【分析】首先证明四边形ACDF是矩形,利用∠PBE的正弦值可求出AC的长,即可得DF的长,利用∠PEB的正切值即可得答案.【详解】∵FD⊥AB,AC⊥EB,∴DF∥AC,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∠ABE=43°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.12(m),在Rt△DEF中,∵∠FDE=90°,∠PEB=20°,∴tan∠PEB=≈0.4,∴DE≈=2.8(m),故选:B.【点睛】本题考查解直角三角形的应用及矩形的判定与性质,熟练掌握各三角函数的定义是解题关键.9.如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1 B. C.2 D.【答案】C【解析】【分析】先证明,再证明四边形MOND的面积等于,的面积,继而解得正方形的面积,据此解题.【详解】解:在正方形ABCD中,对角线BD⊥AC,又四边形MOND的面积是1,正方形ABCD的面积是4,故选:C.【点睛】本题考查正方形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.10.如图,二次函数的图象与y轴的交点在与之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程有两个不相等的实数根,则;⑤当时,y随x的增大而减小.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【答案】B【解析】【分析】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系.由抛物线对称轴为直线可判断①,由抛物线顶点坐标可得a与c的关系,由抛物线与y轴交点位置可判断c的取值范围,从而判断②,由抛物线与x轴交点个数可判断③,由抛物线与直线交点个数判断④,由图象可得时,y随x增大而增大,从而判断⑤.【详解】解:∵抛物线对称轴为直线,,①正确.∵抛物线经过,,,∵抛物线与y轴交点在与之间,,,②正确.∵抛物线与x轴有2个交点,,即,③正确.,可整理为,∵抛物线开口向下,顶点坐标为,时,抛物线与直线有两个不同交点,④错误.由图象可得时y随x增大而增大,∴⑤错误.故选:B.二、填空题(每小题3分,共15分)11.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.【答案】x(x﹣12)=864.【解析】【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【详解】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.12.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.【答案】##【解析】【分析】根据已知得出直角坐标系,通过代入A点坐标(3,0),求出二次函数解析式,再根据把x=4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把点A点坐标(3,0)代入得,∴,∴,∴抛物线解析式为:;当水面下降,水面宽为8米时,有把代入解析式,得;∴水面下降米;故答案为:;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.13.在平面直角坐标系中,与是以坐标原点为位似中心的位似图形,相似比为;若点的坐标为,则的对应点的坐标为________.【答案】或【解析】【分析】根据位似图形的有两个,在原点同侧或异侧分类讨论,根据坐标变化规律求解即可.【详解】解:与是以坐标原点为位似中心的位似图形,分两种情况,当与在原点同侧时,E点坐标为:,当与在原点异侧时,E点坐标为:,故答案为:或.【点睛】本题考查了平面直角坐标系中位似图形的坐标变化规律,解题关键是注意分类讨论,熟记位似坐标变化规律.14.如图,矩形与反比例函数(是非零常数,)的图象交于点,,与反比例函数(是非零常数,)的图象交于点,连接,.若四边形的面积为3,则的值为________.【答案】【解析】【分析】根据矩形的性质以及反比例函数系数的几何意义即可得出结论.【详解】解:的图象均在第一象限,,点,均在反比例函数(是非零常数,)的图象上,,矩形的顶点在反比例函数(是非零常数,)的图象上,,,,,故答案为:.【点睛】本题考查了矩形的性质,反比例函数系数的几何意义:在反比例函数图象中任取一点,过这一个点向轴和轴分别作垂线,与坐标轴围城的矩形的面积是定值.15.如图,四边形ABCD为矩形,AB=3,AD=4,AC,BD为矩形的对角线,E是AD边的中点,点F是CD上一点,连接EF,将△DEF沿EF折叠,当点G落在矩形对角线上时,则折痕EF的长是_____.【答案】或【解析】【分析】分两种情况,分别画出图形:当G在AC上时,连接DG交EF于M,证明∠AGD=90°,从而EF∥AC,得EF是△ADC的中位线,可得EF=;当G在BD上,设BD交EF于N,证明△ABD∽△DEF,可得=,EF=.【详解】解:当G在AC上时,连接DG交EF于M,如图甲所示:∵E是AD中点,∴AE=DE,∵将△DEF沿EF折叠,∴DE=GE,∠DME=∠GME=90°,∴AE=DE=GE,∴∠EAG=∠EGA,∠EDG=∠EGD,∵∠EAG+∠EGA+∠EDG+∠EGD=180°,∴2∠EGA+2∠EGD=180°,∴∠EGA+∠EGD=90°,即∠AGD=90°,∴∠AGD=∠DME,∴EF∥AC,∵E是AD中点,∴EF是△ADC的中位线,∴EF=AC,∵AC====5,∴EF=;当G在BD上,设BD交EF于N,如图乙所示:∵将△DEF沿EF折叠,∴∠DNF=90°,∴∠DFN=90°﹣∠FDN=∠ADB,∵∠EDF=90°=∠BAD,∴△ABD∽△DEF,∴=,∵BD=AC=5,DE=AD=2,∴=,∴EF=,综上所述,折痕EF的长是或,故答案为:或.【点睛】本题考查矩形中的翻折问题,涉及相似三角形的判定与性质,三角形的中位线等知识,解题的关键是掌握翻折的性质.三、解答题(本大题共8小题,满分75分)16.解答下列各题:(1)计算:;(2)用配方法解一元二次方程:.【答案】(1)(2)【解析】【分析】本题主要考查了特殊角三角函数值的混合计算,解一元二次方程:(1)先计算特殊角三角函数值,再根据二次根式的混合计算法则求解即可;(2)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方,进而解方程即可.【小问1详解】解:;小问2详解】解:,解得.17.神舟十四号载人飞船的成功发射,再次引发校园科技热.光明中学准备举办“我的航天梦”科技活动周,在全校范围内邀请有兴趣的学生参加以下四项活动,A:航模制作;B:航天资料收集;C:航天知识竞赛;D:参观科学馆.为了了解学生对这四项活动的参与意愿,学校随机调查了该校有兴趣的m名学生(每名学生必选一项且只能选择一项),并将调查的结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)________,________;并补全条形统计图:(2)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人选择参观科学馆;(3)在选择A项活动的10人中,有甲、乙、丙、丁四名女生,现计划把这10名学生平均分成两组进行培训,每组各有两名女生,则甲、乙被分在同一组的概率是多少?【答案】(1)100,35,见解析(2)720名(3)【解析】【分析】(1)根据A:航模制作的有10人,占10%可以求得m的值,从而可以求得n的值;根据题意和m的值可以求得B:航天资料收集;C:航天知识竞赛人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以估算出全校1800名学生中,大约有多少人选择参观科学馆;(3)利用列表或树状图求概率即可【小问1详解】由题意可得,m=10÷10%=100,n%=100%-15%-10%-=35%,故答案为:100,35;由题意可得:B:航天资料收集有:100×35%=35(人)C:航天知识竞赛有:100×15%=15(人)补全条形统计图如图所示:【小问2详解】(名),答:估计该校大约有720名学生选择参观科学馆.【小问3详解】解法一列表如下:甲乙丙丁甲(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)如上表,共有12种等可能的结果.其中恰好选中甲、乙两名同学的结果为2种:(甲,乙),(乙,甲).甲、乙恰好被分在一组的概率为.解法二画树状图为:共有12种等可能的结果:(甲,乙),(甲,丙),(甲,丁),(乙,甲),(乙,丙),(乙,丁),(丙,甲),(丙,乙),(丙,丁),(丁,甲),(丁,乙),(丁,丙).甲、乙恰好被分在一组的结果为4种:(甲,乙),(乙,甲)(丙丁一组意味着,甲乙一组).甲、乙恰好被分在一组的概率为.【点睛】本题考查扇形统计图、条形统计图、用样本估计总体,利用列表或树状图求概率.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.如图,四边形为菱形,点E在的延长线上,.(1)求证:;(2)当时,求的长.【答案】(1)见解析(2)AE=9【解析】【分析】(1)根据四边形ABCD是菱形,得出,,根据平行线的性质和等边对等角,结合,得出,即可证明结论;(2)根据,得出,代入数据进行计算,即可得出AE的值.【小问1详解】证明:∵四边形ABCD为菱形,∴,,,,∵,∴,∴.【小问2详解】∵,∴,即,解得:.【点睛】本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,根据题意得出,是解题关键.19.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?【答案】(1);(2)40元或20元;(3)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元;【解析】【分析】(1)直接由待定系数法,即可求出一次函数的解析式;(2)根据题意,设当天玩具的销售单价是元,然后列出一元二次方程,解方程即可求出答案;(3)根据题意,列出w与的关系式,然后利用二次函数的性质,即可求出答案.【小问1详解】解:由图可知,设一次函数的解析式为,把点(25,50)和点(35,30)代入,得,解得,∴一次函数的解析式为;【小问2详解】解:根据题意,设当天玩具的销售单价是元,则,解得:,,∴当天玩具的销售单价是40元或20元;【小问3详解】解:根据题意,则,整理得:;∵,∴当时,有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.【点睛】本题考查了二次函数的性质,二次函数的最值,一次函数的应用,解一元二次方程,解题的关键是熟练掌握题意,正确的找出题目的关系,从而进行解题.20.如图,平面直角坐标系中,直线分别与x,y轴交于点A,B,与双曲线分别交于点C,D(点C第一象限,点D在第三象限),作轴于点E,,.(1)求反比例函数的解析式;(2)当时,求x的取值范围;(3)在y轴上是否存在一点P,使?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)(2)或(3)或【解析】【分析】本题是反比例函数的综合题,主要考查反比例函数与一次函数的交点问题,解题的关键是用绝对值的方法确定的长度,(1)在中,,,再用待定系数法即可求解;(2)求出点D坐标,观察函数图象即可求解;(3)设点P的坐标为,则,,即可求解.,【小问1详解】在中,,,故点A、B的坐标分别为、,将点A、B的坐标代入直线的表达式得,,解得:故直线的表达式为;当时,,点C的坐标为,将点C的坐标代入反比例函数表达式得,解得:,故反比例函数的解析式;【小问2详解】直线分别与x,y轴交于点A,B,与双曲线分别交于点C,D,联立,解得:或,点C在第一象限,点D在第三象限,点D坐标为,观察图象知,当时,x的取值范围是或;【小问3详解】设点P的坐标为,则,,解得:或,点P的坐标或21.某数学小组要测量学校路灯的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:测量项目测量数据从A处测得路灯顶部P的仰角从D处测得路灯顶部P的仰角测角仪到地面的距离两次测量时测角仪之间的水平距离计算路灯顶部到地面的距离约为多少米?(结果精确到0.1米.参考数据;)【答案】3.5米【解析】【分析】延长DA,交PE于点F,则DF⊥PE,先得到四边形ABCD、CDFE是矩形,然后由解直角三角形求出AF的长度,再求出PF的长度,即可求出答案.【详解】解:如图:延长DA,交PE于点F,则DF⊥PE,∵,∴四边形ABCD是平行四边形,∵AB⊥BC,∴四边形ABCD是矩形,同理:四边形CDFE是矩形;∴,,在直角△PDF中,有,在直角△PAF中,有,∴,即,∴,解得:;∴;∴(米);∴路灯顶部到地面的距离约为3.5米.【点睛】本题考查了解直角三角形的应用,解直角三角形,矩形的判定和性质,解题的关键是熟练掌握题意,正确的作出辅助线,正确的求出PF的长度.22.如图,在中,,过点C的直线,D为AB边上一点,过点D作,交直线于E,垂足为F,连接,.(1)求证:;(2)当D为的中点时,判断四边形的形状并说明理由;(3)在满足(2)的条件下,当满足什么条件时,四边形是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形是菱形,理由见解析;(3)当是等腰直角三角形时,四边形是正方形,理由见解析;【解析】【分析】(1)证出根据平行四边形的判定定理,得到四边形是平行四边形,根据平行四边形的性质,得到结论;(2)根据D为中点,得到,根据,得到,根据平行四边形的判定定理,得到四边形是平行四边形,根据,D为的中点,,得到,进而根据菱形的判定定理,得到四边形是菱形;(3)根据,得到是等腰直角三角形,根据是等腰直角三角形,及D为的中点,即可得到,再根据正方形的判定定理得到四边形是正方形.【小问1详解】,,,,即,四边形是平行四边形,;【小问2详解】四边形是菱形,理由如下:D为的中点,,,,∥,四边形是平行四边形,,D为的中点,,四边形是菱形;【小问3详解】当是等腰直角三角形时,四边形是正方形,理由如下:是等腰直角三角形,,D为的中点,,,四边形是菱形;四边形是正方形;【点睛】本题考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.23.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论