版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.2.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.3.已知函数,若时,恒成立,则实数的值为()A. B. C. D.4.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元5.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则()A. B. C. D.6.已知函数,则()A. B. C. D.7.执行程序框图,则输出的数值为()A. B. C. D.8.已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4.给出下列命题:①;②;③;④,其中真命题的个数为()A.1 B.2 C.3 D.49.过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为()A. B. C. D.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.11.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.12.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为等比数列的前项和,若,且,,成等差数列,则.14.已知,若的展开式中的系数比x的系数大30,则______.15.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.16.在的展开式中,常数项为________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.附表及公式:.18.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.19.(12分)如图在四边形中,,,为中点,.(1)求;(2)若,求面积的最大值.20.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.21.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.22.(10分)已知函数(1)已知直线:,:.若直线与关于对称,又函数在处的切线与垂直,求实数的值;(2)若函数,则当,时,求证:①;②.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.2.A【解析】
依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.3.D【解析】
通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得.故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.4.D【解析】
用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.5.C【解析】
求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.6.A【解析】
根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.7.C【解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.8.A【解析】
先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.9.D【解析】
根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可.【详解】解:抛物线的焦点,准线方程为,设,则,故,此时,即.则直线的斜率.故选:D.【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题.10.C【解析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.11.C【解析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.12.B【解析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13..【解析】试题分析:∵,,成等差数列,∴,又∵等比数列,∴.考点:等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量的方程即可求解,考查学生等价转化的思想与方程思想.14.2【解析】
利用二项展开式的通项公式,二项式系数的性质,求得的值.【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15.【解析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、、、、、共6种,其中2只球的颜色不同的是、、、、共5种;所以所求的概率是.考点:古典概型概率16.【解析】
的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.有的把握认为顾客购物体验的满意度与性别有关;.【解析】
由题得,根据数据判断出顾客购物体验的满意度与性别有关;获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有个,其中仅有1人是女顾客的基本事件有个,进而求出获得纪念品的人中仅有人是女顾客的概率.【详解】解析:由题得所以,有的把握认为顾客购物体验的满意度与性别有关.获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有:,,,,,,,,,,,,,,,共个.其中仅有1人是女顾客的基本事件有:,,,,,,,,共个.所以获得纪念品的人中仅有人是女顾客的概率.【点睛】本小题主要考查统计案例、卡方分布、概率等基本知识,考查概率统计基本思想以及抽象概括等能力和应用意识,属于中档题.18.(1);(2).【解析】
(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解.【详解】解:(1)∵,且,∴,由正弦定理,∴,∵∴锐角,∴(2)∵,∴∴∴在中,由余弦定理得∴【点睛】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.19.(1)1;(2)【解析】
(1),在和中分别运用余弦定理可表示出,运用算两次的思想即可求得,进而求出;(2)在中,根据余弦定理和基本不等式,可求得,再由三角形的面积公式以及正弦函数的有界性,求出的面积的最大值.【详解】(1)由题设,则在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面积的最大值为,此时.【点睛】本题主要考查余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于中档题.20.(1)(2)答案见解析(3)答案见解析【解析】
(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求得答案;(2)由(Ⅰ)知,,分时,,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数.【详解】(1),,设曲线在点,处的切线的斜率为,则,又,曲线在点,处的切线方程为:,即;(2)由(1)知,,故当时,,所以在上单调递增;当时,,;,,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个零点.【点睛】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题.21.(1);(2);(3)【解析】
(1)依题意,得,,由此能求出椭圆C的方程.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,故,由,知,由此能求出圆T的方程.(3)设,则直线MP的方程为:,令,得,同理:,由此能证明为定值.【详解】(1)依题意,得,,,故椭圆C的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度班组安全生产与应急管理合同3篇
- 2025年度公司管理人员知识产权保护聘用合同3篇
- 二零二五年度农村房屋买卖合同协议书(含农业科技示范)
- 2025年度公司车辆维修配件供应及质量保证协议3篇
- 2025年度关于智能制造领域方协议解约的合规性指导与合同3篇
- 二零二五年度农村养牛基地建设项目合同2篇
- 2025年度公厕保洁服务与社区绿化合作合同3篇
- 二零二五年度商业地产经营权承包管理合同2篇
- 二零二五年度婚姻财产权益保障及变更协议3篇
- 2025年度智能设备试用体验服务全新试用协议3篇
- 2024版企业股权收购并购重组方案合同3篇
- 2024AIGC创新应用洞察报告
- 统编版2024-2025学年三年级上册语文期末情景试卷(含答案)
- 2024年食品生产企业食品安全管理人员监督抽查考试题库(含答案)
- 【期末试题】河西区2018-2019学年度第一学期六年级数学期末试题
- 2022年总经理年会发言稿致辞二
- 警综平台运行管理制度
- 立法学完整版教学课件全套ppt教程
- 简约中国风水墨山水工作总结通用PPT模板
- 矿山测量课程设计
- 防火门施工方案
评论
0/150
提交评论