版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A. B. C. D.2.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.3.已知实数x,y满足,则的最小值等于()A. B. C. D.4.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.5.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像6.已知函数(),若函数在上有唯一零点,则的值为()A.1 B.或0 C.1或0 D.2或07.()A. B. C. D.8.的展开式中的常数项为()A.-60 B.240 C.-80 D.1809.已知i是虚数单位,则1+iiA.-12+32i10.设为非零实数,且,则()A. B. C. D.11.若复数满足(为虚数单位),则其共轭复数的虚部为()A. B. C. D.12.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是()A.③④ B.①② C.②④ D.①③④二、填空题:本题共4小题,每小题5分,共20分。13.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”.即若的大斜、中斜、小斜分别为a,b,c,则.已知点D是边AB上一点,,,,,则的面积为________.14.函数在处的切线方程是____________.15.抛物线的焦点坐标为______.16.设是等比数列的前项的和,成等差数列,则的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求B;(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.18.(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.20.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.21.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.22.(10分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.2.A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.3.D【解析】
设,,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.4.D【解析】
根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.5.B【解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.6.C【解析】
求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【详解】解:∵(),∴,∴当时,由得,则在上单调递减,在上单调递增,所以是极小值,∴只需,即.令,则,∴函数在上单调递增.∵,∴;当时,,函数在上单调递减,∵,,函数在上有且只有一个零点,∴的值是1或0.故选:C【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.7.D【解析】
利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.8.D【解析】
求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.9.D【解析】
利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。10.C【解析】
取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.11.D【解析】
由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi=1﹣i,∴z=,所以共轭复数=-1+,虚部为1故选D.【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.12.A【解析】
由茎叶图中数据可求得中位数和平均数,即可判断①②③,再根据数据集中程度判断④.【详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故①错误;,,则,故②错误,③正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故④正确,故选:A【点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.二、填空题:本题共4小题,每小题5分,共20分。13..【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求积术”公式即可求得答案.【详解】,所以,由余弦定理可知,得.根据“三斜求积术”可得,所以.【点睛】本题考查正切的和角公式,同角三角函数的基本关系式,余弦定理的应用,考查学生分析问题的能力和计算整理能力,难度较易.14.【解析】
求出和的值,利用点斜式可得出所求切线的方程.【详解】,则,,.因此,函数在处的切线方程是,即.故答案为:.【点睛】本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.15.【解析】
变换得到,计算焦点得到答案.【详解】抛物线的标准方程为,,所以焦点坐标为.故答案为:【点睛】本题考查了抛物线的焦点坐标,属于简单题.16.2【解析】
设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.【详解】解:等比数列的公比设为成等差数列,可得若则显然不成立,故则,化为解得,则故答案为:.【点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)利用正弦定理及可得,从而得到;(2)在中,利用余弦定可得,,而,故当时,的面积取得最大值,此时,,在中,再利用余弦定理即可解决.【详解】(1)由正弦定理及已知得,结合,得,因为,所以,由,得.(2)在中,由余弦定得,因为,所以,当且仅当时,的面积取得最大值,此时.在中,由余弦定理得.即.【点睛】本题考查正余弦定理解三角形,涉及到基本不等式求最值,考查学生的计算能力,是一道容易题.18.(1)有的把握认为是否戴口罩出行的行为与年龄有关.(2)【解析】
(1)根据列联表和独立性检验的公式计算出观测值,从而由参考数据作出判断.(2)因为样本中出行不戴口罩的居民有30人,其中年轻人有10人,用样本估计总体,则出行不戴口罩的年轻人的概率为,是老年人的概率为.根据独立重复事件的概率公式即可求得结果.【详解】(1)由题意可知,有的把握认为是否戴口罩出行的行为与年龄有关.(2)由样本估计总体,出行不戴口罩的年轻人的概率为,是老年人的概率为.人未戴口罩,恰有2人是青年人的概率.【点睛】本题主要考查独立性检验及独立重复事件的概率求法,难度一般.19.(1);(2).【解析】
(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,,在梯形中,,则,,,,所以,;(2)取中点,连接、,过点作,则,作于,连接.为的中点,且,,且,所以,四边形为平行四边形,由于,,,,,,,为的中点,所以,,,同理,,,,平面,,,,为面与面所成的锐二面角,,,,,则,,,平面,平面,,,,面,为与底面所成的角,,,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.20.(1)(2)【解析】试题分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;
(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标.试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.21.(1),;(2)【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版简单工程车合同
- 2024预制梁场租赁及安装服务合同3篇
- 2024版版权授权:DJ艺人合同3篇
- 2024版企业并购合同:金融行业整合2篇
- 2024版标准租车协议3篇
- 动物学知到智慧树章节测试课后答案2024年秋宁波大学
- 2024版技术服务合同模块
- 2025年度国画收藏品保险服务合同3篇
- 广州医保知识培训课件
- 铜矿建设延期合同
- 一年级数学加减法口算题每日一练(25套打印版)
- 黑河黄藏寺水利枢纽工程环境影响评价报告书-黑河流域管理局
- 2024-2025学年五年级科学上册第二单元《地球表面的变化》测试卷(教科版)
- 2022年同等学力人员申请硕士学位日语水平统一考试真题
- 长距离输气管线工艺设计方案
- 北师大版小学五年级上册数学第六单元《组合图形的面积》单元测评培优试卷
- 用特征方程求数列的通项
- 甲醇浓度密度对照表0~40
- 四年级奥数题(一)找规律
- 会计学原理课后习题与答案
- 县领导在新录用公务员培训班开班典礼上的讲话
评论
0/150
提交评论