版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列美丽的图案中,不是轴对称图形的是()A. B. C. D.2.一等腰三角形的两边长x、y满足方程组则此等腰三角形的周长为
()A.5 B.4 C.3 D.5或43.下列长度的三条线段可以组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,104.已知一次函数图象上的三点,,,则,,的大小关系是()A. B. C. D.5.如图,在数轴上,点A表示的数是,点B,C表示的数是两个连续的整数,则这两个整数为()A.-5和-4 B.-4和-3 C.3和4 D.4和56.在平面直角坐标系中,点(2,﹣4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6C.15,20,8 D.9,15,88.已知点到轴的距离为,到轴距离为,且在第二象限内,则点的坐标为()A. B. C. D.不能确定9.已知多边形的每个内角都是108°,则这个多边形是()A.五边形 B.七边形 C.九边形 D.不能确定10.直线y=kx+b经过第二、三、四象限,那么()A., B., C., D.,二、填空题(每小题3分,共24分)11.如图,已知的面积为,平分,且于点,则的面积是____________.12.若关于的方程的解不小于,则的取值范围是___________________.13.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式_____.14.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1>x2,则y1________y2(填“>”或“<”).15.已知,点在的内部,点和点关于对称,点和点关于对称,则三点构成的三角形是__________三角形.16.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.17.如图,在△ABC中,AD是中线,则△ABD的面积△ACD的面积(填“>”“<”“=”).18.计算(10xy2﹣15x2y)÷5xy的结果是_____.三、解答题(共66分)19.(10分)现有3张边长为的正方形纸片(类),5张边长为的矩形纸片(类),5张边长为的正方形纸片(类).我们知道:多项式乘法的结果可以利用图形的面积表示.例如:就能用图①或图②的面积表示.(1)请你写出图③所表示的一个等式:_______________;(2)如果要拼一个长为,宽为的长方形,则需要类纸片_____张,需要类纸片_____张,需要类纸片_____张;(3)从这13张纸片中取出若干张,每类纸片至少取出一张,把取出的这些纸片拼成一个正方形(按原纸张进行无缝隙,无重叠拼接),则拼成的正方形的边长最长可以是_______(用含的式子表示).20.(6分)(1)图1是的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形;(2)如图2,在正方形网格中,以点为旋转中心,将按逆时针方向旋转,画出旋转后的;(3)如图3,在边长为1个单位长度的小正方形组成的网格中,点、、、都是格点,作关于点的中心对称图形.21.(6分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若,,求的值.22.(8分)已知,请化简后在–4≤x≤4范围内选一个你喜欢的整数值求出对应值.23.(8分)解不等式组,并把解集在数轴上表示出来.24.(8分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.25.(10分)如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,操作示例我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).思考发现小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.1.图2中,矩形ABEF的面积是;(用含a,b,c的式子表示)2.类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.3.小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.26.(10分)如图,,,于点D,于点E,BE与CD相交于点O.(1)求证:;(2)求证;是等腰三角形;(3)试猜想直线OA与线段BC又怎样的位置关系,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、A【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.【详解】解:解方程组,得,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为2.所以,这个等腰三角形的周长为2.故选:A.【点睛】本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.3、D【分析】根据三角形任意两边之和大于第三边逐一判断即可.【详解】A.3+4=7<8,故不能组成三角形,不符合题意,B.5+6=11,故不能组成三角形,不符合题意,C.1+2=3,故不能组成三角形,不符合题意,D.5+6=11>10,故能组成三角形,符合题意,故选:D.【点睛】本题考查了能够组成三角形三边的条件,三角形任意两边之和大于第三边,任意两边之差小于第三边;用两条较短的线段相加,如果大于最长那条就能够组成三角形.熟练掌握三角形的三边关系是解题关键.4、A【分析】利用一次函数的增减性即可得.【详解】一次函数中的则一次函数的增减性为:y随x的增大而减小故选:A.【点睛】本题考查了一次函数的图象特征,掌握并灵活运用函数的增减性是解题关键.5、B【分析】先估算的大小,再求出﹣的大小即可判断.【详解】∵9<13<16,∴3<<4,∴﹣4<﹣<﹣3,故选:B.【点睛】本题考查了实数与数轴,解题关键是会估算二次根式的大小.6、D【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点的横坐标为正,纵坐标为负,∴该点在第四象限.故选:D.【点睛】本题考查平面直角坐标系的知识;用到的知识点为:横坐标为正,纵坐标为负的点在第四象限.7、A【解析】A,∵3+4<8∴不能构成三角形;B,∵4+6>9∴能构成三角形;C,∵8+15>20∴能构成三角形;D,∵8+9>15∴能构成三角形.故选A.8、A【分析】根据坐标的表示方法由点到x轴的距离为3,到y轴的距离为2,且它在第二象限内即可得到点的坐标为.【详解】解:∵点到x轴的距离为3,到y轴的距离为2,且它在第二象限内,
∴点的坐标为.
故答案为.【点睛】本题考查了点的坐标:在直角坐标系中,过一点分别作x轴和y轴的垂线,用垂足在x轴上的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.9、A【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】∵多边形的每个内角都是108°,
∴每个外角是180°-108°=72°,
∴这个多边形的边数是360°÷72°=5,
∴这个多边形是五边形,
故选A.【点睛】此题考查多边形的外角与内角,解题关键是掌握多边形的外角与它相邻的内角互补.10、C【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】∵直线y=kx+b经过第二、四象限,∴k<0,又∵直线y=kx+b经过第三象限,即直线与y轴负半轴相交,∴b<0,故选C.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系:k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(每小题3分,共24分)11、9【分析】延长AP交BC于D点,可证△APB≌△DPB,可得AP=PD,△APC的面积等于△CPD的面积,利用面积的加减可得△BPC的面积是△ABC面积的一半.【详解】延长AP交BC于D点,∵平分,且∴∠APB=∠DPB,∠APB=∠BPD=90°又BP=BP∴△APB≌△DPB(ASA)∴AP=PD,S△APB=S△BPD∴S△APC=S△PCD∴S△APB+S△APC=S△BPD+S△PCD∴S△BPC==9故答案为:9【点睛】本题考查的是三角形的全等及三角形的面积,掌握等底等高的三角形面积相等是关键.12、m≤-8【分析】先根据题意求到的解,会是一个关于的代数式,再根据不小于列出不等式,即可求得正确的答案.【详解】解:解得故答案为:.【点睛】本题考查的是方程的相关知识,根据题意列出含有m的不等式是解题的关键.13、.【解析】依据大正方形的面积的不同表示方法,即可得到等式.【详解】由题可得,大正方形的面积=a2+2ab+b2;大正方形的面积=(a+b)2;∴a2+2ab+b2=(a+b)2,故答案为a2+2ab+b2=(a+b)2【点睛】本题主要考查了完全平方公式的几何应用,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.14、<【分析】根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.【详解】解:∵一次函数y=-1x+1中k=-1<0,∴y随x的增大而减小,∵x1>x1,∴y1<y1.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.15、等边【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【详解】根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故答案为:等边.【点睛】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.16、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.17、=【解析】根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线可以把三角形的面积分成相等的两部分.解:根据等底同高可得△ABD的面积=△ACD的面积.注意:三角形的中线可以把三角形的面积分成相等的两部分.此结论是在图形中找面积相等的三角形的常用方法.18、2y﹣3x【分析】多项式除以单项式,多项式的每一项除以该单项式,然后运用同底数幂相除,底数不变,指数相减可得.【详解】解:(10xy2﹣15x2y)÷5xy=2y﹣3x.故答案为:2y﹣3x.【点睛】掌握整式的除法为本题的关键.三、解答题(共66分)19、(1);(2)1,4,3;(3)【分析】(1)从整体和部分两方面表示该长方形的面积即可;(2)根据拼成前后长方形的面积不变可先算出该长方形的面积再确定A类B类C类纸片的张数;(3)由A类B类C类纸片的张数及面积可知构成的正方形的面积最大为,利用完全平方公式可得边长.【详解】解:(1)从整体表示该图形面积为,从部分表示该图形面积为,所以可得;(2)该长方形的面积为,A类纸片的面积为,B类纸片的面积为,C类纸片的面积为,所以需要类纸片1张,需要类纸片4张,需要类纸片3张;(3)A类纸片的面积为,有3张;B类纸片的面积为,有5张;C类纸片的面积为,有5张,所以能构成的正方形的面积最大为,因为,所以拼成的正方形的边长最长可以是.【点睛】本题考查了整式乘法的图形表示,灵活将图形与代数式相结合是解题的关键.20、(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据中心对称图形的定义,画出图形,即可;(2)以点为旋转中心,将按逆时针方向旋转的对应点画出来,再顺次连接起来,即可;(3)作各个顶点关于点的中心对称后的对应点,再顺次连接起来,即可得到答案.【详解】(1)如图所示;(2)如图所示;(3)如图所示;【点睛】本题主要考查中心对称图形和图形的旋转变换,掌握中心对称图形的定义,是解题的关键.21、(1);(2).【分析】(1)我们通过观察可知阴影部分面积为4ab,他是由大正方形的面积减去中间小正方形的面积得到的,从而得出等式;
(2)可利用上题得出的结论求值.【详解】(1)观察图形可知阴影部分的面积是边长为(a+b)的正方形面积减去边长为(a-b)的正方形面积,也是4个长是a宽是b的长方形的面积,所以.(2)根据(1)的结论可得:【点睛】本题是根据图形列等式,并利用等式来求值,利用等式时要弄清那个式子是等式中的a,那个式子是b.22、;当x=1时,原式=1.【分析】先计算括号内的部分,再将除法转化为乘法,得出结果,再【详解】解:原式====,∵–4≤x≤4且为整数,∴x=±4,±3,±2,±1,0,又根据题目和计算过程中x≠0,2,4,当x=1时,原式=1.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式化简的运算法则,同时注意x不能取的值.23、-1≤x﹤,数轴表示见解析【分析】先分别解出每个不等式的解集,再把各个解集表示在数轴上,取公共部分即为不等式组的解集.【详解】解:对于不等式组由①得:x≥-1,由②得:x﹤,所以原不等式组的解是:-1≤x﹤.【点睛】本题考查了解一元一次不等式组、数轴的应用,能正确解出不等式的解集且表示在数轴上是解答的关键.24、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考点:1.全等三角形的判定与性质;1.勾股定理.25、(1);(2)见解析;(3)见解析.【分析】(1)矩形ABEF的面积实际是原直角梯形的面积=(上底+下底)×高÷2;
(2)由图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国医疗改革过程
- 危险源辨识管理培训
- 人工肛门便袋护理
- 介入治疗并发症
- 2024变压器维修合同
- 2024年达美航空项目成效分析报告
- 2024至2030年中国照相机透明部品数据监测研究报告
- 2024至2030年中国鸡用霉菌毒素强力清除剂数据监测研究报告
- 2024至2030年中国隐蔽天线数据监测研究报告
- 2024至2030年中国纯香花生油行业投资前景及策略咨询研究报告
- GB 12955-2024防火门
- 集装箱购销协议合同范本示例
- 求职面试技巧培训
- 室内装修施工安全方案
- 直播电商代运营服务协议(GMV计费模式)
- 工程询价合同模板
- 事业单位招聘《综合基础知识》考试试题及答案
- 2024年中国瓦楞包装纸箱市场调查研究报告
- 无锡风机吊装施工方案
- 第九章 职业健康安全与环境管理课件
- 2024年保安员证考试题库及答案(共260题)
评论
0/150
提交评论