2023届四川省营山县联考数学八上期末统考模拟试题含解析_第1页
2023届四川省营山县联考数学八上期末统考模拟试题含解析_第2页
2023届四川省营山县联考数学八上期末统考模拟试题含解析_第3页
2023届四川省营山县联考数学八上期末统考模拟试题含解析_第4页
2023届四川省营山县联考数学八上期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一组数据2,2,4,3,6,5,2的众数和中位数分别是A.3,2 B.2,3 C.2,2 D.2,42.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形3.如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9 B.8 C.27 D.454.下列命题的逆命题为假命题的是()A.有两角互余的三角形是直角三角形 B.如果,那么直线经过一、三象限C.如果,那么点在坐标轴上 D.三边分别相等的两个三角形全等5.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C. D.26.若是一个完全平方式,则k的值为()A. B.18 C. D.7.已知点到轴的距离为,到轴距离为,且在第二象限内,则点的坐标为()A. B. C. D.不能确定8.在二次根式中,最简二次根式的有()A.2个 B.3个 C.4个 D.5个9.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为().A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)10.下列计算正确的是()A.(a2)3=a5 B.(15x2y﹣10xy2)÷5xy=3x﹣2yC.10ab3÷(﹣5ab)=﹣2ab2 D.a﹣2b3•(a2b﹣1)﹣2=11.如图,已知直角三角板中,,顶点,分别在直线,上,边交线于点.若,且,则的度数为()A. B. C. D.12.已知一种细胞的直径约为,请问这个数原来的数是()A. B. C. D.二、填空题(每题4分,共24分)13.若3,2,x,5的平均数是4,则x=_______.14.若将进行因式分解的结果为,则=_____.15.两个最简二根式与相加得,则______.16.开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为_________.17.方程的根是______。18.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为_____三、解答题(共78分)19.(8分)化简:[(a+2b)(a﹣2b)﹣(a+4b)2]÷(4b).20.(8分)如图,平面直角坐标系中,的顶点都在网格点上,其中点坐标为.(1)填空:点的坐标是__________,点的坐标是________;(2)将先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的;(3)求的面积.21.(8分)图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.22.(10分)如图1,在等腰直角三角形中,,点在边上,连接,连接(1)求证:(2)点关于直线的对称点为,连接①补全图形并证明②利用备用图进行画图、试验、探究,找出当三点恰好共线时点的位置,请直接写出此时的度数,并画出相应的图形23.(10分)如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD,(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.24.(10分)阅读材料:要把多项式am+an+bm+bn因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(𝑎𝑚+𝑎𝑛)+(𝑏𝑚+𝑏𝑛)=a(𝑚+𝑛)+b(𝑚+𝑛)=(𝑎+𝑏)(𝑚+𝑛),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x2-y2+x-y(2)已知四个实数a、b、c、d同时满足a2+ac=12k,b2+bc=12k.c2+ac=24k,d2+ad=24k,且a≠b,c≠d,k≠0①求a+b+c的值;②请用含a的代数式分别表示b、c、d25.(12分)某校图书室计划购进甲乙两种图书,已知购买一本甲种图书比购买一本乙种图书多元,若用元购买甲种图书和用元购买乙种图书,则购买甲种图书的本数是购买乙种图书本数的一半.(1)求购买一本甲种图书、一本乙种图书各需要多少元?(2)经过商谈,书店决定给予优惠,即购买一本甲种图书就赠送一本乙种图书,如果该校图书室计划购进乙种图书的本数是甲种图书本数的倍还多本,且购买甲乙两种图书的总费用不超过元,那么最多可购买多少本甲种图书?26.某区的校办工厂承担了为全区七年级新生制作夏季校服3000套的任务,为了确保这批新生在开学时准时穿上校服,加快了生产速度,实际比原计划每天多生产50%,结果提前2天圆满完成了任务,求实际每天生产校服多少套.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:.【点睛】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.2、B【解析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.3、A【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可【详解】∵正方形A.B.

C的面积依次为2、4、3∴根据图形得:2+4=x−3解得:x=9故选A.【点睛】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键4、C【分析】先逐一得出每个命题的逆命题,然后再判断真假即可.【详解】A的逆命题是直角三角形有两角互余,是真命题,故该选项不符合题意;B的逆命题是如果直线经过一、三象限,那么,是真命题,故该选项不符合题意;C的逆命题是如果点在坐标轴上,那么,是假命题,故该选项符合题意;D的逆命题是如果两个三角形全等,那么这两个三角形的三边相等,是真命题,故该选项不符合题意;故选:C.【点睛】本题主要考查逆命题和真假命题,会写出命题的逆命题是解题的关键.5、B【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.【点睛】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.6、C【分析】根据完全平方公式形式,这里首末两项是和9这两个数的平方,那么中间一项为加上或减去和9乘积的2倍.【详解】解:是一个完全平方式,首末两项是和9这两个数的平方,,解得.故选:C.【点睛】本题是完全平方公式的应用,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积得2倍的符号,有正负两种情况,避免漏解.7、A【分析】根据坐标的表示方法由点到x轴的距离为3,到y轴的距离为2,且它在第二象限内即可得到点的坐标为.【详解】解:∵点到x轴的距离为3,到y轴的距离为2,且它在第二象限内,

∴点的坐标为.

故答案为.【点睛】本题考查了点的坐标:在直角坐标系中,过一点分别作x轴和y轴的垂线,用垂足在x轴上的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.8、A【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,依次判断即可.【详解】,故不是最简二次根式,,被开方数是小数。故不是最简二次根式,不能化简,故是最简二次根式,不能化简,故是最简二次根式,,故不是最简二次根式,故选A.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.9、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3)故选A.【点睛】此题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解决此题的关键.10、B【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【详解】A、(a2)3=a6,故A错误;B、(15x2y﹣10xy2)÷5xy=3x﹣2y,故B正确;C、10ab3÷(﹣5ab)=﹣2b2,故C错误;D、a﹣2b3•(a2b﹣1)﹣2=,故D错误;故选B.【点睛】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键.11、B【分析】根据直角三角形的特点、平行线的性质及平角的性质即可求解.【详解】∵直角三角板中,,∴∵∴∵∴故=故选B.【点睛】此题主要考查三角形的角度求解,解题的关键是熟知平行线的性质.12、D【分析】把还原成一般的数,就是把1.49的小数点向左移动4位.【详解】这个数原来的数是cm故选:D【点睛】此题主要考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n<0时,|n|是几,小数点就向左移几位.二、填空题(每题4分,共24分)13、6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值.【详解】∵3,2,x,5的平均数是4,∴,故答案为:6.【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键.14、-1【分析】将(3x+1)(x-1)展开,则3x1-mx+n=3x1-x-1,从而求出m、n的值,进一步求得mn的值.【详解】解:∵(3x+1)(x-1)=3x1-x-1,

∴3x1-mx+n=3x1-x-1,

∴m=1,n=-1,∴mn=-1.

故答案为-1.【点睛】本题考查了因式分解的应用,知道因式分解前后两式相等是解题的关键.15、1【分析】两个最简二次根式可以相加,说明它们是同类二次根式,根据合并的结果即可得出答案.【详解】由题意得,与是同类二次根式,∵与相加得,∴,,

则.

故答案为:1.【点睛】本题考查了二次根式的加减运算,判断出与是同类二次根式是解答本题的关键.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.111112275=.故答案为:.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×11﹣n,其中1≤|a|<11,n为由原数左边起第一个不为零的数字前面的1的个数所决定.17、0或-1【解析】由得+x=0,x(x+1)=0,x=0或x=-1故答案为:0或-118、8【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2−PQ2=289−225=64,∴QR=8,即字母A所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.三、解答题(共78分)19、﹣5b﹣2a.【分析】根据题意先计算括号内的,再计算除法即可得出答案.【详解】解:[(a+2b)(a﹣2b)﹣(a+4b)2]÷(4b)=(a2﹣4b2﹣a2﹣8ab﹣16b2)÷(4b)=(﹣20b2﹣8ab)÷(4b)=﹣5b﹣2a.【点睛】本题主要考查整式的混合运算,解题的关键是掌握完全平方公式和平方差公式及合并同类项法则.20、(1),;(2)画图见解析;(3)【分析】(1)利用点的坐标的表示方法写出A点和B点坐标;(2)利用点的坐标平移规律写出点、、的坐标,然后描点得到;(3)用一个矩形的面积分别减去三个三角形的面积可得到△ABC的面积.【详解】解:(1);(2)如图所示:即为所求;(3).【点睛】此题考查坐标与图形变化——平移,解题关键在于掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.21、(1)m+n;m–n;(2)(m−n)2=(m+n)2–4mn,理由见解析.【解析】分析:(1)观察图形很容易得出图b中大正方形的边长和阴影部分小正方形的边长;(2)观察图形可知大正方形的面积(m+n)2,减去阴影部分的正方形的面积(m−n)2等于四块小长方形的面积4mn,即(m−n)2=(m+n)2–4mn;详解:(1)m+n;m−n(2)解:(m−n)2=(m+n)2–4mn理由如下:右边=(m+n)2−4mn=m2+2mn+n2−4mn=m2−2mn+n2=(m−n)2=左边,所以结论成立.点睛:本题考查了完全平方公式的几何应用,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起.要学会观察.22、(1)证明见解析;(2)①见解析;②画图见解析,.【分析】(1)先根据同角的余角相等推出∠BAD=∠CAE,再根据SAS证得△BAD≌△CAE,进而可得结论;(2)①根据题意作图即可补全图形;利用轴对称的性质可得ME=AE,CM=CA,然后根据SSS可推出△CME≌△CAE,再利用全等三角形的性质和(1)题的∠BAD=∠CAE即可证得结论;②当三点恰好共线时,设AC、DM交于点H,如图3,由前面两题的结论和等腰直角三角形的性质可求得∠DCM=135°,然后在△AEH和△DCH中利用三角形的内角和可得∠HAE=∠HDC,进而可得,接着在△CDM中利用三角形的内角和定理求出∠CMD的度数,再利用①的结论即得答案.【详解】解:(1)证明:∵AE⊥AD,∴∠DAE=90°,∴∠CAE+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠BAD=∠CAE,又∵BA=CA,DA=EA,∴△BAD≌△CAE(SAS),∴;(2)①补全图形如图2所示,∵点关于直线的对称点为,∴ME=AE,CM=CA,∵CE=CE,∴△CME≌△CAE(SSS),∴,∵∠BAD=∠CAE,∴;②当三点恰好共线时,设AC、DM交于点H,如图3,由(1)题知:,∵△CME≌△CAE,∴,∴∠DCM=135°,在△AEH和△DCH中,∵∠AEH=∠ACD=45°,∠AHE=∠DHC,∴∠HAE=∠HDC,∵,∴,∴,∵,∴.【点睛】本题考查了依题意作图、等腰直角三角形的性质、轴对称的性质、全等三角形的判定和性质以及三角形的内角和定理等知识,综合性较强,熟练掌握上述知识是解题关键.23、(1)证明见解析;(2).【解析】(1)先根据等边三角形的性质可得,再根据角的和差、外角的性质可得,然后根据等腰三角形的判定定理即可得证;(2)先根据角的和差倍分求出的度数,从而可得是等腰直角三角形,再利用直角三角形的性质、等边三角形的性质求出的长,然后由线段的和差即可得.【详解】(1)是等边三角形是等腰三角形;(2)如图,过点D作于点F是等腰直角三角形故EB的长为.【点睛】本题考查了等边三角形的性质、等腰三角形的判定定理、直角三角形的性质等知识点,较难的是题(2),通过作辅助线,构造一个等腰直角三角形是解题关键.24、(1)(𝑥−𝑦)(𝑥+𝑦+1);(2)①;②,,【分析】(1)将x2-y2分为一组,x-y分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知=12k,可得,将等号左边参照(1)因式分解,即可求解.②由a2+ac=12k,c2+ac=24k可得2(a2+ac)=c2+ac,即可得出c=2a,同理得出,【详解】(1)x2-y2+x-y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论