计算方程12x^2+175x+625=0解的三种方法_第1页
计算方程12x^2+175x+625=0解的三种方法_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计算方程12x2+175x+625=0解的几种方法主要内容:本文主要通过因式分解、二次方程求根公式以及配方法,介绍计算二次方程12x2+175x+625=0解的主要过程步骤。※.因式分解法思路:将方程左边分解形如(ax+b)(cx+d)形式,再由方程性质求解。对于本题,有:12x2+175x+625=0,有:(3x+25)(4x+25)=0,则:3x+25=0或4x+25=0,则:x1=-eq\f(25,3)或x2=-eq\f(25,4)。※.二次方程求根公式法思路:由二次方程ax2+bx+c=0的求根公式x1,2=eq\f(-b±\r(b2-4ac),2a)来计算。对于本题有:12x2+175x+625=0,x1,2=eq\f(-175±\r(1752-4*12*625),24),x1,2=eq\f(-175±\r(625),24),则:x1=eq\f(-175+25,24)=-eq\f(25,3),x2=eq\f(-175-25,24)=-eq\f(25,4)。※.配方法思路:将二次方程左边进行配方再求解方程的解。12x2+175x+625=0,12(x2+eq\f(175,12)x)=-625,12(x2+eq\f(175,12)x+eq\f(30625,576))=12*eq\f(30625,576)-625(x+eq\f(175,24))2=eq\f(625,576),所以:x+eq\f(175,24)=±eq\f(25,24),即:x1=eq\f(25,24)-eq\f(175,24)=-eq\f(25,3),x2=-eq

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论