版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.2.若直线与曲线相切,则()A.3 B. C.2 D.3.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A. B. C. D.4.设全集,集合,,则()A. B. C. D.5.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()A. B.C. D.6.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.7.已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为()A. B. C. D.8.设等比数列的前项和为,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.134 B.67 C.182 D.10810.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交11.已知集合,,则等于()A. B. C. D.12.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足则的取值范围是______.14.设为定义在上的偶函数,当时,(为常数),若,则实数的值为______.15.已知正项等比数列中,,则__________.16.曲线在点处的切线方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.18.(12分)已知实数x,y,z满足,证明:.19.(12分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的正切值.20.(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.21.(12分)已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.2、A【解析】
设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.3、B【解析】
求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,,则,,,由,,成等差数列,可得,化为,即,可得,故选:.【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.4、B【解析】
可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.5、B【解析】
根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,,其图像关于直线对称,对满足的,,有,∴.再根据其图像关于直线对称,可得,.∴,∴.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.6、C【解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.7、C【解析】
不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,,即,即,解得,(舍去).故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.8、C【解析】
根据等比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.9、B【解析】
根据几何概型的概率公式求出对应面积之比即可得到结论.【详解】解:设大正方形的边长为1,则小直角三角形的边长为,
则小正方形的边长为,小正方形的面积,
则落在小正方形(阴影)内的米粒数大约为,
故选:B.【点睛】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键.10、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.11、B【解析】
解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.12、C【解析】
根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.【详解】.由题意,画出约束条件表示的平面区域如下图所示,令,则如图所示,图中直线所示的两个位置为的临界位置,根据几何关系可得与轴的两个交点分别为,所以的取值范围为.故答案为:【点睛】本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.14、1【解析】
根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【详解】因为为定义在上的偶函数,所以,又因为当时,,所以,所以实数的值为1.故答案为:1【点睛】本题主要考查函数奇偶性的应用,还考查了运算求解的能力,属于基础题.15、【解析】
利用等比数列的通项公式将已知两式作商,可得,再利用等比数列的性质可得,再利用等比数列的通项公式即可求解.【详解】由,所以,解得.,所以,所以.故答案为:【点睛】本题考查了等比数列的通项公式以及等比中项,需熟记公式,属于基础题.16、【解析】
利用导数的几何意义计算即可.【详解】由已知,,所以,又,所以切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值点为,极小值为,无极大值;(2)证明见解析【解析】
先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴【点睛】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题.18、见解析【解析】
已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,...【点睛】本题考查柯西不等式的应用,属于基础题.19、(1)见解析(2)(文)(理)【解析】
(1)证明:取PD中点G,连结GF、AG,∵GF为△PDC的中位线,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四边形,则EF∥AG,又EF不在平面PAD内,AG在平面PAD内,∴EF∥面PAD;(2)(文)解:取AD中点O,连结PO,∵面PAD⊥面ABCD,△PAD为正三角形,∴PO⊥面ABCD,且,又PC为面ABCD斜线,F为PC中点,∴F到面ABCD距离,故;(理)连OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,则∠MEB+∠MBE=90°,即OM⊥EC.连PM,又由(2)知PO⊥EC,可得EC⊥平面POM,则PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值为.【方法点晴】本题主要考查线面平行的判定定理、二面角的求法、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.20、(1),;(2)【解析】试题分析:(1)由消去参数,可得的普通方程,由可得的普通方程;(2)设为曲线上一点,点到曲线的圆心的距离,结合可得最值,的最大值为,从而得解.试题解析:(1)的普通方程为.∵曲线的极坐标方程为,∴曲线的普通方程为,即.(2)设为曲线上一点,则点到曲线的圆心的距离.∵,∴当时,d有最大值.又∵P,Q分别为曲线,曲线上动点,∴的最大值为.21、(1);(2)【解析】
(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【详解】(1).取,解得.(2),因为,故,.根据余弦定理:,..【点睛】本题考查了三角恒等变换,三角函数单调性,余弦定理,意在考查学生对于三角函数知识的综合应用.22、(1):,:;(2),此时.【解析】试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学三年级上册心理健康教育教案(适合北京教育出版社)
- 二年级书法教案
- 安徽公务员面试模拟29
- 湖南公务员面试模拟61
- 广西申论真题2021年(B卷)
- 专利转让合同协议书2024年
- 2024年标准离婚协议书(范本)
- 2024年酒水购销合同样本一
- 2024年材料买卖合同
- 2024年聘请经济与法律顾问合同「样本」
- 南昌师范高等专科学校建院升本工作任务与时间安排表
- 嘉应学院园林生态学实验指导书
- 身份证件类型代码及国籍代码
- 勘测定界标书设计书测绘方案
- 律师事务所金融业务部法律服务方案
- 装修工程施工进度计划表excel模板
- 数字电子设计报告生理刺激反应时间测试仪
- 5.32.4园路、广场硬质铺装工程检验批质量验收记录
- 相逢在花季――青春期心理健康
- 2019年银行重要空白凭证及有价单证管理办法
- 抗滑桩监理实施细则
评论
0/150
提交评论