




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,不是轴对称图形的是()A. B. C. D.2.k、m、n为三整数,若,,,则下列有关于k、m、n的大小关系正确的是()A.k<m=n B.m=n<k C.m<n<k D.m<k<n3.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.44.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于…()A.2cm2 B.1cm2 C.cm2 D.cm25.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或86.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.7.视力表中的字母“”有各种不同的摆放方向,下列图中两个“”不成轴对称的是()A. B. C. D.8.若分式的值是0,则的值是()A. B. C. D.9.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC10.在,,,,中,分式有().A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.计算:_________.12.如图,在△ABC中,∠A=90°,AB=2,AC=,以BC为斜边作等腰Rt△BCD,连接AD,则线段AD的长为_____.13.若(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为_____.14.如图,CD平分∠ACB,AE∥DC交BC的延长线于E,若∠ACE=80°,则∠CAE=_____15.如图,在△ABC中,∠ACB=90°,AC=15,BC=9,点P是线段AC上的一个动点,连接BP,将线段BP绕点P逆时针旋转90°得到线段PD,连接AD,则线段AD的最小值是______.16.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.17.已知m是关于x的方程的一个根,则代数式的值等于____________.18.函数的自变量的取值范围是.三、解答题(共66分)19.(10分)如图,在和中,、、、在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①;②;③;④解:我写的真命题是:在和中,已知:___________________.求证:_______________.(不能只填序号)证明如下:20.(6分)如图,、两个村子在笔直河岸的同侧,、两村到河岸的距离分别为,,,现在要在河岸上建一水厂向、两村输送自来水,要求、两村到水厂的距离相等.(1)在图中作出水厂的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂距离处多远?21.(6分)如图,ΔABC中,A点坐标为(2,4),B点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出ΔABC关于y轴对称的ΔA′B′C′(不写画法),并写出点A′,B′,C′的坐标;(2)求ΔABC的面积.22.(8分)奉节脐橙是重庆市奉节县特产,中国地理标志产品,眼下,正值奉节脐橙销售旺季,某商家看准商机,第一次用4800元购进一批奉节脐橙,销售良好,于是第二次又用12000元购进一批奉节脐橙,但此时进价比第一次涨了2元,所购进的数量恰好是第一次购进数量的两倍.(1)求第一次购进奉节脐橙的进价.(2)实际销售中,两次售价均相同,在销售过程中,由于消费者挑选后,果品下降,第一批奉节脐橙的最后100千克八折售出,第二批奉节脐橙的最后800千克九折售出,若售完这两批奉节脐橙的获利不低于9400元,则售价至少为多少元?23.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.24.(8分)在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为______;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是______.25.(10分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,该服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.请问该服装商第一批进货的单价是多少元?26.(10分)阅读材料:若,求的值.解:∵,∴,,∴,,∴.根据你的观察,探究下面的问题:(1)已知,求的值;(2)已知△ABC的三边长,且满足,求c的取值范围;(3)已知,,比较的大小.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据轴对称图形的概念对各选项进行分析即可得出结论.【详解】A.不是轴对称图形,故本选项正确;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.是轴对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是解答本题的关键.2、A【分析】先化简二次根式,再分别求出k、m、n的值,由此即可得出答案.【详解】由得:由得:由得:则故选:A.【点睛】本题考查了二次根式的化简,掌握化简方法是解题关键.3、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.4、B【分析】根据三角形的中线将三角形面积平分这一结论解答即可.【详解】∵在△ABC中,点D是BC的中点,∴=2cm2,∵在△ABD和△ACD中,点E是AD的中点,∴=1cm2,=1cm2,∴=2cm2,∵在△BEC中,点F是CE的中点,∴=1cm2,即S阴影=1cm2故选:B.【点睛】本题考查三角形的中线与三角形面积的关系,熟知三角形的中线将三角形面积平分这一结论是解答的关键.5、D【解析】试题分析:当底为2时,腰为3,周长=2+3+3=8;当底为3时,腰为2,周长=3+2+2=7.考点:等腰三角形的性质.6、A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、D【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【详解】解:A选项中两个“”成轴对称,故本选项不符合题意;B选项中两个“”成轴对称,故本选项不符合题意;C选项中两个“”成轴对称,故本选项不符合题意;D选项中两个“”不成轴对称,故本选项符合题意;故选D.【点睛】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.8、C【分析】分式值为零的条件是分子等于零且分母不等于零.【详解】分式的值为0,∴且.
解得:.
故选:C.【点睛】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.9、C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.10、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】,,中的分母中均不含有字母,因此它们是整式,而不是分式,,分母中含有字母,因此是分式.
综上所述,分式的个数是2个.故选:B.【点睛】本题考查的是分式的定义,解答此题时要注意分式的定义,只要是分母中含有未知数的式子即为分式.二、填空题(每小题3分,共24分)11、【分析】根据整式的除法法则计算可得解.【详解】故答案是:.12、【分析】过D作DE⊥AB于E,DF⊥AC于F,则四边形AEDF是矩形,先证明△BDE≌△CDF(AAS),可得DE=DF,BE=CF,以此证明四边形AEDF是正方形,可得∠DAE=∠DAF=45°,AE=AF,代入AB=2,AC=可得BE、AE的长,再在Rt△ADE中利用特殊三角函数值即可求得线段AD的长.【详解】过D作DE⊥AB于E,DF⊥AC于F,则四边形AEDF是矩形,∴∠EDF=90°,∵∠BDC=90°,∴∠BDE=∠CDF,∵∠BED=∠CFD=90°,BD=DC,∴△BDE≌△CDF(AAS),∴DE=DF,BE=CF,∴四边形AEDF是正方形∴∠DAE=∠DAF=45°,∴AE=AF,∴2﹣BE=+BE,∴BE=,∴AE=,∴AD=AE=,故答案为:.【点睛】本题考查了全等三角形的综合问题,掌握矩形的性质、正方形的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.13、1【分析】根据多项式乘以多项式法则展开,合并同类项,即可得出﹣k+1=0,求出即可.【详解】解:(x+2y)(2x﹣ky﹣1)=2x2﹣kxy﹣x+1xy﹣2ky2﹣2y=2x2+(﹣k+1)xy﹣2ky2﹣2y﹣x,∵(x+2y)(2x﹣ky﹣1)的结果中不含xy项,∴﹣k+1=0,解得:k=1,故答案为1.【点睛】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.14、【详解】∠ACE=80°,°,又CD平分°,AE∥DC,°,∠CAE=180°-80°-50°=50°.故答案为:50°.15、3【分析】如图,过点D作DE⊥AC于E,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【详解】如图,过点D作DE⊥AC于E,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为3,故答案为3.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.16、169或1【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【详解】分两种情况:
①当5和12为直角边长时,
由勾股定理得:第三边长的平方,即斜边长的平方;
②12为斜边长时,
由勾股定理得:第三边长的平方;
综上所述:第三边长的平方是169或1;
故答案为:169或1.【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.17、-1【分析】将m代入方程中得到,进而得到由此即可求解.【详解】解:因为m是方程的一个根,,进而得到,∴,∴,故答案为:-1.【点睛】本题考查了一元二次方程解的概念,是方程的解就是将解代回方程中,等号两边相等即可求解.18、x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠1三、解答题(共66分)19、已知:B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明见解析;或已知:B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明见解析(任选其一即可)【分析】根据题意可将①②④作为题设,③作为结论,然后写出已知和求证,再利用SSS即可证出△ABC≌△DEF,从而证出结论;或将①③④作为题设,②作为结论,然后写出已知和求证,再利用SAS即可证出△ABC≌△DEF,从而证出结论,.【详解】将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明:∵BE=CF,∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF.或将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴AC=DF.以上两种方法任选其一即可.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.20、(1)详见解析;(2)水厂距离处.【分析】(1)作线段AB的垂直平分线,与CD的交点即为E点的位置;(2)根据垂直平分线的性质及勾股定理得出方程解答即可.【详解】(1)如图,点E为所求的点.(2)设CE=x,则DE=6-x在中,在中,由(1)知,AE=BE∴解得答:水厂距离处.【点睛】本题考查的是尺规作图-线段的垂直平分线及勾股定理,掌握垂直平分线的性质及勾股定理的应用是关键.21、(1)见解析,A′(-2,4),B′(3,-2),C′(-3,1);(2)【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【详解】解:(1)如图,A′(-2,4),B′(3,-2),C′(-3,1);(2)S△ABC=6×6-×5×6-×6×3-×1×3,=36-15-9-,=.【点睛】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.22、(1)8元.(2)15.1元.【分析】(1)设该种脐橙的第一次进价是每千克x元,根据题意列出方程,解方程即可求解.(2)根据利润=售价−进价列出不等式并解答.【详解】(1)设该种脐橙的第一次进价是每千克x元,则第二次进价是每千克(x+2)元,由题意,得解得x=8,经检验x=8是方程的解.答:该种脐橙的第一次进价是每千克8元.(2)设每千克售价至少为x元,由题意得:解得x≥≈15.1.答:每千克售价至少为15.1元.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.23、(1)25;(2)这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.1;(3)初赛成绩为1.65m的运动员能进入复赛.【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.1,则这组数据的中位数是1.1.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.1m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数24、(1);(2)BE与CF的和始终不变,见解析;(3)【解析】(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+6,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+CD=BC=AB,∵BE+CF=nAB,∴n=,故答案为;(2)如图2①过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=∠CFD=∠AHF=90°,∵△ABC是等边三角形,∴∠A=60°,∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,且D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即:DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变(3)由(2)知,DE=DF,BE+CF=AB,∵AB=4,∴BE+CF=2,∴四边形DEAF的周长为L=DE+EA+AF+FD=DE+AB-BE+AC-CF+DF=DE+AB-BE+AB+DE=2DE+2AB-(BE+CF)=2DE+2×4-2=2DE+6,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,由(1)知,BG=BD=1,∴DE最小=BG=,∴L最小=2+6,当点F和点C重合时,DE最大,此时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴DE=BD=AB=2,即:L最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省盘锦市兴隆台区辽河中学2024-2025学年八年级下学期期中生物试题(含答案)
- 设备维护管理规范
- 自动控制系统实验指导书
- 设备供货方案
- 广东省清远市四校联盟2024-2025学年高一下学期期中联考生物试卷(含答案)
- 幼儿园《小壁虎借尾巴》课件
- 2025年Android知识体系!阿里P8面试官都说太详细了一线互联网公司面经总结-android p8知识体系图
- 2025年android适配器ui2025年Android面经分享面试总结-android 适配器模式面试
- 建筑施工特种作业-建筑架子工(普通脚手架)真题库-5
- 山东数学特色题目及答案
- 2022年黑龙江省龙东地区中考地理试题及参考答案
- 混凝土模板支撑工程专项施工方案(140页)
- T∕CADERM 3041-2020 扩展的创伤重点超声评估规范
- 苏教版四年级数学下册试卷(全套)
- 五年级北师大版英语下学期语法填空易错专项练习题
- 100道结构力学弯矩图
- GRACE评分表教学提纲
- 机械连接扭矩检查记录
- 水利水电工程砖砌体单元评定表
- GB_T 24359-2021 第三方物流服务质量及测评(高清-现行)
- 院士专家工作站管理办法
评论
0/150
提交评论