2023届江苏省泰兴市黄桥中学数学八上期末检测模拟试题含解析_第1页
2023届江苏省泰兴市黄桥中学数学八上期末检测模拟试题含解析_第2页
2023届江苏省泰兴市黄桥中学数学八上期末检测模拟试题含解析_第3页
2023届江苏省泰兴市黄桥中学数学八上期末检测模拟试题含解析_第4页
2023届江苏省泰兴市黄桥中学数学八上期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用、()表示小长方形的长和宽,则下列关系式中错误的是()A. B.C. D.2.如图,在中,,,则的度数为()A. B. C. D.3.设(2a+3b)2=(2a﹣3b)2+A,则A=()A.6ab B.12ab C.0 D.24ab4.如图,在,中,,,,点,,三点在同一条直线上,连结,则下列结论中错误的是()A. B.C. D.5.下列运算正确的是()A. B.= C. D.6.如图,两车从南北方向的路段的端出发,分别向东、向西行进相同的距离到达两地,若与的距离为千米,则与的距离为()A.千米 B.千米 C.千米 D.无法确定7.如图,在等腰中,顶角,平分底角交于点是延长线上一点,且,则的度数为()A.22° B.44° C.34° D.68°8.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.39.如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间10.表示实数a与1的和不大于10的不等式是()A.a+1>10 B.a+1≥10 C.a+1<10 D.a+1≤1011.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min12.一辆装满货物,宽为米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米 B.4.0米 C.3.9米 D.3.8米二、填空题(每题4分,共24分)13.如图,△ABC的面积为11cm1,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是_____cm1.14.关于的分式方程的解为正数,则的取值范围是___________.15.在平面直角坐标系中,点关于轴对称的点的坐标为______.16.已知,x、y为实数,且y=﹣+3,则x+y=_____.17.如图,直线:与直线:相交于点P(1,2),则关于的不等式x+1>mx+n的解集为____________.18.对于两个非零代数式,定义一种新的运算:x@y=.若x@(x﹣2)=1,则x=____.三、解答题(共78分)19.(8分)我们知道,如果两个三角形全等,则它们面积相等,而两个不全等的三角形,在某些情况下,可通过证明等底等高来说明它们的面积相等,已知与是等腰直角三角形,,连接、.(1)如图1,当时,求证(2)如图2,当时,上述结论是否仍然成立?如果成立,请证明;如果不成立,说明理由.(3)如图3,在(2)的基础上,如果点为的中点,连接,延长交于,试猜想与的位置关系,并证明你的结论.20.(8分)如图,在平面直角坐标系中,、、、各点的坐标分别为、、、.(1)在给出的图形中,画出四边形关于轴对称的四边形,并写出点和的坐标;(2)在四边形内部画一条线段将四边形分割成两个等腰三角形,并直接写出两个等腰三角形的面积差.21.(8分)解方程组和计算(1)计算①②(2)解方程组①②22.(10分)先化简再求值:若,且,求的值.23.(10分)(1)解方程组:(2)解方程组:24.(10分)因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a25.(12分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP=cm,CQ=cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?26.化简分式:,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.

参考答案一、选择题(每题4分,共48分)1、A【分析】由正方形的面积公式可求x+y=12,x﹣y=2,可求x=7,y=5,即可求解.【详解】由题意可得:(x+y)2=144,(x﹣y)2=4,∴x+y=12,x﹣y=2,故B、C选项不符合题意;∴x=7,y=5,∴xy=35,故D选项不符合题意;∴x2+y2=84≠100,故选项A符合题意.故选A.【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.2、D【分析】由题意根据三角形内角和为180°进行分析计算,即可得解.【详解】解:∵在中,,,∴=180°-90°-54°=36°.故选:D.【点睛】本题考查三角形内角和定理,熟练掌握三角形内角和为180°是解题关键,同时也可利用直角三角形两锐角互余进行分析.3、D【解析】∵(2a+3b)2=4a2+12ab+9b2,(2a-3b)2+A=4a2-12ab+9b2+A,(2a+3b)2=(2a-3b)2+A∴4a2+12ab+9b2=4a2-12ab+9b2+A,∴A=24ab;故选D.4、C【分析】根据题意,通过三角形的全等性质及判定定理,角的和差,勾股定理进行逐一判断即可得解.【详解】A.∵,∴,即,∵在和中,,∴,∴,故A选项正确;B.∵,∴,∴,则,故B选项正确;C.∵,∴只有当时,才成立,故C选项错误;D.∵为等腰直角三角形,∴,∴,∵,∴,∴,故D选项正确,故选:C.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.5、B【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【详解】A.x3•x4=x7,故本选项不合题意;B.(x3)4=x12,正确,故本选项符合题意;C.x6÷x2=x4,故本选项不合题意;D.(3b3)2=8b6,故本选项不合题意.故选:B.【点睛】此题考查同底数幂的乘除法运算法则,幂的乘方运算,正确掌握运算法则是解题关键.6、A【分析】先由条件证明,再根据全等三角形的性质即可得出结论.【详解】解:由题意得:AC=AD,,∴在和中∴∴∴与的距离为千米故选:A.【点睛】本题全等三角形的应用,读懂图信息,将文字语言转化为几何语言是解题关键.7、C【分析】先根据等腰三角形的性质求得∠ACB=68º,从而求出∠ACE=112º,再由求出的度数.【详解】∵在等腰中,顶角,∴∠ACB=,又∵,∠ACB=∠E+∠CDE,∴∠E=∠CDE=.故选:C.【点睛】考查了三角形外角性质、等腰三角形的性质和三角形内角和定理,解题关键是利用了三角形的一个外角等于与它不相邻的两个内角和.8、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.9、B【分析】先根据点A,B的坐标求出OA,OB的长度,再根据勾股定理求出AB的长,即可得出OC的长,再比较无理数的大小确定点C的横坐标介于哪个区间.【详解】∵点A,B的坐标分别为(﹣2,0),(0,3),∴OA=2,OB=3,在Rt△AOB中,由勾股定理得:AB=∴AC=AB=,∴OC=﹣2,∴点C的坐标为(﹣2,0),∵,∴,即点C的横坐标介于1和2之间,故选:B.【点睛】本题考查了弧与x轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.10、D【分析】根据题意写出不等式即可.【详解】由题意可得:a+1≤1.故选D.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.11、D【解析】A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.12、A【分析】根据题意欲通过如图的隧道,只要比较距厂门中线米处的高度比车高即可,根据勾股定理得出的长,进而得出的长,即可得出答案.【详解】车宽米,欲通过如图的隧道,只要比较距厂门中线米处的高度与车高,在中,由勾股定理可得:(),米,卡车的外形高必须低于米.故选:.【点睛】此题主要考查了垂径定理和勾股定理的应用,根据题意得出的长是解题关键.二、填空题(每题4分,共24分)13、2.【分析】延长CD交AB于E,依据△ACD≌△AED,即可得到CD=ED,进而得到S△BCD=S△BED,S△ACD=S△AED,据此可得S△ABD=S△AED+S△BED=S△ABC.【详解】解:如图所示,延长CD交AB于E,由题可得,AP平分∠BAC,∴∠CAD=∠EAD,又∵CD⊥AP,∴∠ADC=∠ADE=90°,又∵AD=AD,∴△ACD≌△AED(ASA),∴CD=ED,∴S△BCD=S△BED,S△ACD=S△AED,∴S△ABD=S△AED+S△BED=S△ABC=×11=2(cm1),故答案为:2.【点睛】本题考查的是作图−基本作图以及角平分线的定义,熟知角平分线的作法是解答此题的关键.14、且.【分析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解为正数,∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案为m>2且m≠1.15、【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(﹣8,7)关于x轴对称的点的坐标为(﹣8,﹣7),故答案为:(﹣8,﹣7).【点睛】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.16、2或2.【分析】直接利用二次根式有意义的条件求出x好y的值,然后代入x+y计算即可.【详解】解:由题意知,x2﹣2≥0且2﹣x2≥0,所以x=±2.所以y=3.所以x+y=2或2故答案是:2或2.【点睛】此题主要考查了二次根式有意义的条件以及平方根,正确得出x,y的值是解题关键.17、x>1【分析】当x+1>mx+n时,直线在直线的上方,根据图象即可得出答案.【详解】当x+1>mx+n时,直线在直线的上方,根据图象可知,当直线在直线的上方时,x的取值范围为x>1,所以的不等式x+1>mx+n的解集为x>1故答案为:x>1.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.18、.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【详解】根据题中的新定义化简得:=1,去分母得:x﹣2+x2=x2﹣2x,解得:x=,经检验x=是分式方程的解.故答案为:.【点睛】此题考查解分式方程,解题关键在于利用转化的思想,解分式方程注意要检验.三、解答题(共78分)19、(1)证明见解析;(2)成立,理由见解析;(3)GF⊥BE,证明见解析【分析】(1)由△ABC和△DEC是等腰直角三角形,即可得出相应的线段相等,从而可以证明出;(2)作AG垂直于DC的延长线于G,作BH垂直于CE,垂足为H,利用题目已知条件可证的△ACG≌△BCH,从而知道AG=BH,即可得出;(3)延长CG到点H,连接AH,根据题目已知可证的△AGH≌△DGC,得到CD=AH,∠AHG=∠HCD,进一步证的△AHC≌△ECB,得到∠CEB=∠AHC=∠HCD,最后利用互余即可证得GF⊥BE.【详解】证明:(1)∵△ABC和△DEC是等腰直角三角形∴AC=CB,DC=CE,∠ACB=∠DCE=90°∵∠BCE=90°∴∠ACD=90°∵,∴(2)成立如图所示,作AG垂直于DC的延长线于G,作BH垂直于CE,垂足为H∵∠DCE=90°∴∠GCE=90°∵BH⊥CE∴∠BHC=90°∴GD∥BH∴∠GCB=∠CBH∵∠GCB+∠ACG=90°,∠BCH+∠CBH=90°∴∠BCH=∠ACG在△ACG和△BCH中∴△ACG≌△BCH∴AG=BH∵,,CE=CD∴(3)GF⊥BE如图所示,延长CG到点H,使得HG=GC,连接AH∵点G为AD的中点∴AG=GD在△AGH和△DGC∴△AGH≌△DGC∴CD=AH,∠AHG=∠HCD∴AH∥CD∴∠HAC+∠ACD=180°∵∠ACB=∠DCE=90°∴∠ACD+∠BCE=180°∴∠HAC=∠BCE∵△DCE是等腰三角形∴CD=CE∴CE=AH在△AHC和△ECB中∴△AHC≌△ECB∴∠CEB=∠AHC=∠HCD∵∠HCD+∠FCE=90°∴∠FCE+∠CEF=90°∴∠CFE=90°∴GF⊥BE【点睛】本题主要考查的是全等三角形的综合运用,正确的掌握全等三角形的判定方法是解题的关键.20、(1)见解析,,;(2)见解析,1.【分析】(1)根据“横坐标互为相反数,纵坐标不变”分别得到4个顶点关于y轴的对称点,再按原图的顺序连接即可;根据网络结构的特点,依据各点所在象限及距离坐标轴的距离可得相应坐标;

(2)根据网络结构的特点,判断相等的边长,可将四边形分割成两个等腰三角形,再利用割补法求得其面积差即可.【详解】(1)四边形A1B1C1D1如图所示;点和的坐标分别为:,;(2)根据网络结构的特点知:AB=AD,CD=CB,则线段BD可将四边形分割成两个等腰三角形,如图所示BD为所作线段;,,∴.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21、(1)①;②;(2)①;②.【分析】(1)①先化简二次根式,再合并同类二次根式即可;②先利用乘法分配律相乘,再化简二次根式,合并同类二次根式即可;(2)①利用代入消元法即可求解;②用加减消元法即可求解.【详解】解(1)①原式=;②原式===;(2)①将[2]代入[1]中得,解得,将代入[2]中得,所以该方程的解为:;②[1]×2得,[2]×3得,[3]-[4]得,将代入[1]中解得,所以该方程的解为:.【点睛】本题考查二次根式的混合运算,解二元一次方程组.(1)中,二次根式的混合运算,一般有乘除,先乘除,再化简,然后合并同类项.只有加减,先化简,再合并同类项;(3)掌握用代入消元法和加减消元法解二元一次方程组的基本步骤是解决此题的关键.22、10【分析】将原式化简得到最简结果,再将x=10+y代入即可.【详解】解:原式==∵,∴,代入得:原式=10.【点睛】本题考查了分式的化简求值,已知字母的关系式求分式的值,注意题中整体思想的运用.23、(1);(2)【分析】(1)采用加减法求解消去y即可;(2)采用代入法消去x即可;【详解】解:(1)①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=﹣3,则方程组的解为;(2)由①得:x﹣y=1③,把③代入②得:4﹣y=5,解得:y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为.【点睛】本题考查了二元一次方程组的解法,解答关键是根据方程组中方程特点,灵活选用代入法或加减法求解.24、(1)a(a+4)(a﹣4);(1)﹣1a(1a﹣1)1.【分析】(1)首先提公因式a,再利用平方差进行分解即可;(1)首先提公因式﹣1a,再利用完全平方公式进行分解即可.【详解】(1)原式=a(a1﹣16)=a(a+4)(a﹣4);(1)原式=﹣1a(4a1﹣4a+1)=﹣1a(1a﹣1)1.【点睛】此题主要考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论