




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附录A英文原文ULTASONICRANGINGINAIRG.E.RudashevskiandA.A.GorbatovUDC534,321.9:531.71.083.7Oneofthemostimportantproblemsininstrumentationtechnologyistheremote,contactlessmeasurementofdistancesintheorderof0.2to10minair.Suchaproblemoccurs,forinstance,whenmeasuringtherelativethreedimensionalpositionofseparatemachinemembersorstructuralunits.Interestingpossibilitiesforitssolutionareopenedupbyutilizingultrasonicvibrationsasaninformationcarrier.Thephysicalpropertiesofair,inwhichthemeasurementsaremade,permitvibrationstobeemployedatfrequenciesupto500kHzfordistancesupto0.5mbetweenamemberandthetransducer,orupto60kHzwhenrangingonobstacleslocatedatdistancesupto10m.Ultrasonicwaveproduction:Thesoundwaveistheobjectmechanicalvibrationscondition(orenergy)disseminationform.Theso-calledvibrationisreferstomaterialtheparticlethereciprocatingmotionwhichcarriesonnearbyitspositionofequilibrium.Forexample,drumsurfaceafterrap,itonhighandlowvibrates,thiskindofvibrationalstatetodisseminatesinalldirectionsthroughtheairmedium,thisisasoundwave.Theultrasonicwaveisreferstothevibrationalfrequencytobebiggerthanabove20KHz,itseachsecondvibrationnumberoftimes(frequency)veryhigh,hassurpassedthepersonearsenseofhearingupperlimit(20000Hz),peoplesoundwavenamedultrasonicwavewhichcannothearthiskind.SupersonicandmayWenShengbeessentiallyconsistent,theircommongroundisonekindofmechanicalvibrations,usuallywilldisseminatebythelongitudinalwavewayintheelasticmedium,willbeonekindofenergydisseminationform,itsdiversitywillbetheultrasonicfrequencyishigh,thewavelength,willhavethegoodbeamincertaindistancealongthestraightlinedisseminationandthedirectivity,atpresenttheabdomensupersonicimageformationwillusethefrequencyrangein2~5MHz,(willvibrate1timefor3~3.5MHzeachsecondis1Hz,1MHz=106Hzcommonlyused,namelyeachsecondwillvibrate1,000,000times,butWenBofrequencybetween16-20000HZ).Twomainparametersaboutultrasonicwave:Twomainparametersaboutultrasonicwaveare:Frequency:F≥20KHz;Powerdensity:p=emissivepower(W)/emittingarea(cm2);Usuallyp≥0.3w/cm2;Thesupersonicwaveenergywhichdisseminatesintheliquidcarriesonthecleantotheobjectsurface'scontamination,itsprincipleavailable“thecavitation”thephenomenonexplained:Theultrasonicwavevibrationdisseminateswhentheliquidthesoundwaveintensityofpressurewhichachievesanatmosphericpressure,itspowerdensityis0.35w/cm2,bynowtheultrasonicwavesoundwaveintensityofpressurepeakvaluemightachievethevacuumorthenegativepressure,butinfactdoesnothavethenegativepressureexistence,thereforehasaverytremendouspressureintheliquid,becomestheemptycavitationnucleustheliquidmembertensionfracture.Thiscavityveryclosevacuum,itwhentheultrasonicwaveintensityofpressureachievesreverseisbiggestbursts,asaresultofburststheintenseimpactwhichproducestohittheobjectsurfacecontamination.Thiskindtheshock-wavephenomenonwhichproducesbytheinnumerabletinycavitationairbubblecollapseiscalled“thecavitation”thephenomenon.Thefunctionofultrasonicwave:Theglasscomponents,theglassandceramicarticle'sremovingdirtystuffisterriblebusiness,ifputsinthesegoodsinthecleaningliquid,passesovertheultrasonicwaveagain,onthecleaningliquidfiercevibrationimpactgoodsdirt,cancleancleanlyveryquickly.Althoughsaidthatthehumanitydoesnotlistentothefavorablebalanceoftradesoundwave,butmanyanimalsactuallyhavethisability.Theymayusingtheultrasonicwave“theguidance”,capturefood,oravoidsthedanger.Everybodypossiblysawsummer'snighthashadmanybatsbackandforthtosoarinthegarden,whyhaven'ttheyintheluminoussituationsoared,butwillnotlosethedirection?Thereasonisthebatcansendout2~100,000hertzultrasonicwaves,thisisjustlikeisaactivity“theradarstation”.Thebatispreciselyusesthiskind“theradar”frontthejudgmentflightisaninsect,perhapsobstacle.Butradar'squalityhasseveraldozens,severalhundred,severalthousandkilograms,butinsomeimportantperformanceprecision.Antijammingabilityandsoon,batfarsuperiorandmodernwirelessbeacon.Onthedeepresearchanimalbodyeachkindoforgan'sfunctionandthestructure,willobtaintheknowledgeusesfortoimprovetheexistingequipment,thisisanewdisciplinewhichforthepastmanyyearsdevelops,thenamedbionics.OurhumanityonlythentheacademicsocietyusestheultrasonicwaveuntiltheFirstWorldWar,thisisuses“thesoundnavigationandranging”theprinciplesearchesinthesoundingthegoalandthecondition,likesubmarine'spositionandsoon.Thistimethepeoplesendoutaseriesofdifferentfrequenciestothewaterintheultrasonicwave,thentherecordandtheprocessingreflectionecho,wethenmayestimatethesurveyfromtheechocharacteristicthedistance,theshapeandthedynamicchange.Inthemedicineusingtheultrasonicwavewasmostearlyin1942,AustrianDr.DuSieckusesthesupersonictechnologytoscanthebrainstructureforthefirsttime;Startedlatertothe60sdoctorstheultrasonicwavetoapplyintheabdomenorgan'ssurvey.Nowtheultrasonicwavescanningtechniquehasbecomethemodernmedicinetodiagnosetheessentialtool.Themedicineultrasonicwaveinspection'sprincipleofworkandthesoundnavigationandranginghavecertainsimilarity,soontheultrasonicwavelaunchesinthehumanbody,whenitmeetsthecontactsurfacewheninvivowilloccurreflectsandrefracts,andispossiblyabsorbedintheBodytissueweakens.Becausethehumanbodyeachkindoforganization'sshapeandthestructurearenotsame,thereforeitsreflectionandtherefractionaswellastheabsorptionultrasonicwave'sdegreeisalsodifferent,doctorsarepreciselyreflectedthroughtheinstrumentthewavemode,thecurve,orthephantomcharacteristicdistinguishesthem.Inadditionrecombinationanatomyknowledge,normalandpathologychange,thenmaydiagnosetheorganwhichinspectswhethertobesick.Atpresent,doctorsapplytheultrasounddiagnosismethodhasthedifferentform,maydivideintoA,B,MandtheDfourbroadheadings.A:Bytheprofiledemonstratedthattheorganizationcharacteristicthemethod,mainlyusesinsurveyingorgan'sdiameteralwire,determinesitssize.Mayuseforsomephysicalpropertywhichdistinguishesthepathologicalchangetoorganize,likesubstantive,liquidperhapsgaswhethertohaveandsoon..B:Withplanefigure'sformdemonstratedthatisinvestigatedorganization'sspecialdetails.Wheninspection,firsttransformsthehumanbodycontactsurface'sreflectionsignalintothestrongandtheweakdifferentluminousspot,theseluminousspotsmaycomeoutthroughthefluorescentscreenappearance,thismethodintuitiveisgood,duplicated,maycontrastforaround,thereforewidelyusesinsystemdisease'sandsoongynecologyandobstetricsdepartment,uropoiesis,digestionandcardiovasculardiagnoses.M:Usedinobservingtheactivecontactsurfacetimevariationonemethod.Mostissuitableininspectingheart'sactivesituation,itscurve'sdynamicchangeiscalledtheechocardiogram,mayusefortoobservehearteachstructuretheposition,theactivestate,thestructureconditionandsoon,usesintheaccessoryheartandthetrunkepidemicdisease'sdiagnosis.D:Usedfortoexaminethebloodflowandtheorganactivityoneultrasounddiagnosismethodspecially,isalsocalledtheDopplersupersonicdiagnosticmethod.Maydeterminethatthebloodvesseliswhetherunobstructed,thelumenwhetherornotnarrow,unenlightenedaswellasthepathologicalchangespot.Newgeneration'sDultrasonicwavecanalsointhequotadeterminationlumenblood'scurrentcapacity.InthelastfewyearsthescientisthasdevelopedthecolorcodingDopplersystem,mayundertheechocardiogramdissectionsymbolinstruction,bythedifferentcolordemonstrationbloodstreamdirection,thelusterdepthrepresentthebloodstreamthespeedofflow.Nowalsohasthethree-dimensionalultrasonoscopy,supersonicCT,thesupersonicendoscopeandsoonsupersonictechnologytoemergeunceasingly,andmayalsowithothermonitoringdeviceunionuse,makedisease'sdiagnosisrateofaccuracytoenhancegreatly.Theultrasonicwavetechnologymedicalarenaisplayingthehugerole,alongwiththescienceprogress,itwillbemoreperfect,willbenefitwellthehumanity.Theproblemofmeasuringdistancesinairissomewhatdifferentfromotherproblemsinthea-pplicationofultrasound.Althoughthepossibilityofusingacousticrangingforthispurposehasbeenknownforalongtime,andatfirstglanceappearsverysimple,neverthelessatthepresenttimethereareonlyasmallnumberofdevelopmentsusingthismethodthataresuitableforpracticalpurposes.Themaindifficultyhereisinprovidingareliableacousticthree-dimensionalcontactwiththetestobjectduringseverechangesintheair'scharacteristic.Practicallyallacousticarrangementspresentlyknownforcheckingdistancesuseamethodofmeasuringthepropagationtimeforcertaininformationsamplesfromtheradiatortothereflectingmemberandback.Theunmodulatedacoustic(ultrasonic)vibrationsradiatedbyatransducerarenotinthemselvesasourceofinformation.Inordertotransmitsomeinformationalcommunicationthatcanthenbeselectedatthereceivingendafterreflectionfromthetestmember,theradiatedvibrationsmustbemodulated.Inthiscasetheultrasonicvibrationsarethecarrieroftheinformationwhichliesinthemodulationsignal,i.e.,theyarethemeansforestablishingthespatialcontactbetweenthemeasuringinstrumentandtheobjectbeingmeasured.Thisconclusion,however,doesnotmeanthattheanalysisandselectionofparametersforthecarriervibrationsisofminorimportance.Onthecontrary,thefrequencyofthecarriervibrationsislinkedinaveryclosemannerwiththecodingmethodfortheinformationalcommunication,withthepassbandofthereceivingandradiatingelementsintheapparatus,withthespatialcharacteristicsoftheultrasoniccommunicationchannel,andwiththemeasuringaccuracy.Letusdwellonthequestionsofgeneralimportanceforultrasonicranginginair,namely:onthechoiceofacarrierfrequencyandtheamountofacousticpowerreceived.Ananalysisshowsthatwithconicaldirectivitydiagramsfortheradiatorandreceiver,andassumingthatthedistancebetweenradiatorandreceiverissubstantiallysmallerthanthedistancetotheobstacle,theamountofacousticpowerarrivingatthereceivingareaPrforthecaseofreflectionfromanidealplanesurfacelocatedatrightanglestotheacousticaxisofthetransducercomestowherePradistheamountofacousticpowerradiated,Bistheabsorptioncoefficientforaplanewaveinthemedium,Listhedistancebetweentheelectroacoustictransducerandthetestme-mber,disthediameteroftheradiator(receiver),assumingtheyareequal,andc~istheangleofthedirectivitydiagramfortheelectroacoustictransducerintheradiator.BothinEq.(1)andbelow,theabsorptioncoefficientisdependentontheamplitudeandnotontheintensityasinsomeworks[1],andthereforewethinkitnecessarytostressthisdifference.Inthevariousproblemsofsoundrangingonthetestmembersofmachinesandstructures,therelationshipbetweenthesignalattenuationsduetotheabsorptionofaplanewaveandduetothegeometricalpropertiesofthesoundbeamare,asarule,quitedifferent.Itmustbepointedoutthatthechoiceofthegeometricalparametersforthebeaminspecificpracticalcasesisdictatedbytheshapeofthereflectingsurfaceanditsspatialdistortionrelativetosomeaverageposition.Letusconsiderinmoredetailtherelationshipbetweenthegeometricandthepowerparametersofacousticbeamsforthemostcommoncasesofrangingonplaneandcylindricalstructuralmembers.ItiswellknownthatthedirectionalcharacteristicWofacircularpistonvibratinginaninfinitebaffleisafunctionoftheratioofthepiston'sdiametertothewavelengthd/λasfoundfromthefollowingexpression:(2)whereJlisaBesselfunctionofthefirstorderandαistheanglebetweenanormaltothepistonandalineprojectedfromthecenterofthepistontothepointofobservation(radiation).FromEq.(2)itisreadilyfoundthatatwo-to-onereductioninthesensitivityofaradiatorwithrespecttosoundpressurewilloccurattheangle(3)Foranglesα≤20.Eq.(3)canbesimplifiedto(4)wherecisthevelocityofsoundinthemedimaaandfisthefrequencyoftheradiatedvibrations.ItfollowsfromEq.(4)thatwhenradiatingintoairwherec=330m/sec,thenecessarydiameteroftheradiatorforaspedfiedangleofthedirectivitydiagramatthe0.5levelofpressuretakenwithrespecttotheaxiscanbefoundtobe(5)wheredisincm,fisinkHz,andαisindegreesofangle.CurvesareshowninFig.1plottedfromEq.(5)forsixanglesofaradiator'sdirectivitydiagram.Thedirectivitydiagrmneededforaradiatorisdictatedbythemaximumdistancetobemeasuredandbythespatialdispositionofthetestmemberrelativetotheotherstructuralmembers.Inordertoavoidtheincidenceofsignalsreflectedfromadjacentmembersontotheacousticreceiver,itisnecessarytoprovideasmallangleofdivergenceforthesoundbeamand,asfaraspossible,asmall-diameterradiator.Thesetworequirementsaremutuallyinconsistentsinceforagivenradiationfrequencyareductionofthebeam'sdivergenceanglerequiresanincreasedradiatordiameter.Infact,thediameterofthe"sonicated"spotiscontrolledbytwovariables,namely:thediameteroftheradiatorandthedivergenceangleofthesoundbeam.Inthegeneralcasetheminimumdiameterofthe"sonicated"spotDminonaplanesurfacenormallydisposedtotheradiator'saxisisgivenby(6)whereListheleastdistancetothetestsurface.ThespecifiedvalueofDmincorrespondstoaradiatorwithadiameter(7)AsseenfromEqs.(,6)and(7),theminimumdiameterofthe"sonieated"spotatthemaximumrequireddistancecannotbelessthantworadiatordiameters.Naturally,withshorterdistancestotheobstaclethesizeofthe"sonicated"surfaceisless. LetusconsiderthecaseofsoundrangingonacylindricallyshapedobjectofradiusR.TheproblemistomeasurethedistancefromtheelectroacoustictransducertothesidesurfaceofthecylinderwithitsvariouspossibledisplacementsalongtheXandYaxes.Thenecessaryangleαoftheradiator'sdirectivitydiagramisgiveninthiscasebytheexpression(8)whereαisthevalueoftheangleforthedirectivitydiagram,Ymaxisthemaximumdisplacementofthecylinder'scenterfromtheacousticaxis,andLministheminimumdistancefromthecenteroftheelectroacoustictransducertothereflectingsurfacemeasuredalongthestraightlineconnectingthecenterofthememberwiththecenterofthetransducer.Itisclearthatwhenmeasuringdistance,the"running"timeoftheinformationsignaliscontrolledbythelengthofthepathinadirectionnormaltothecylinder'ssurface,orinotherwords,themeasuredistanceisalwaystheshortestone.Thisstatementiscorrectforallcasesofspecularreflectionofthevibrationsfromthetestsurface.ThesimultaneoussolutionofEqs.(2)and(8)whenW=0.5leadstothefollowingexpression:(9)Intheparticularcasewherethesoundrangingtakesplaceinairhavingc=330m/sec,andontheasstunptionthatLmin<<R,thenecessarydiameterofaunidirectionalpistonradiatordcanbefoundfromthefomula(10)wheredisincmandfisinkHz.CurvesareshowninFig.2fordeterminingthenecessarydiameteroftheradiatorasafunctionoftheratioofthecylinder'sradiustothemaximumdisplacementfromtheaxisforfourradiationfrequencies.AlsoshowninthisfigureisthedirectivitydiagramangleasafunctionofRandYrnaxforfourratiosofminimumdistancetoradius.Theultrasonicabsorptioninairisthesecondfactorindeterminingtheresolutionofultrasonicrangingdevicesandtheirrangeofaction.Theresultsofphysicalinvestigationsconcerningthemeasurementofultrasonicvibrationsairaregivenin[1-3].Upuntilnowtherehasbeennounambiguousexplanationofthediscrepancybetweenthetheoreticalandexpe-rimentalabsorptionresultsforultrasonicvibrationsinair.Thus,forfrequenciesintheorderof50to60kHzatatemperatureof+25oCandarelativehumidityof37%theenergyabsorptioncoefficientforaplanewaveisabout2.5dB/mwhilethetheoreticalvalueis0.3dB/m.TheabsorptioncoefficientBasafunctionoffrequencyforatemperatureof+25oCandahumidityof37%accordingtothedatain[2]canbedescribedbyTable1.Theabsorptioncoefficientdependsontherelativehumidity.Thus,forfrequenciesintheorderof10to20kHzthehighestvalueoftheabsorptioncoefficientoccursat20%humidity[3],andat40%humiditytheabsorptionisreducedbyabouttwotoone.Forfrequenciesintheorderof60kHzthemaximumabsorptionoccursat30.7ohumidity,droppingwhenitisincreasedto98%orloweredto10%byafactorofapproximatelyfourtoone.Theairtemperaturealsohasanappreciableeffectontheultrasonicabsorption[1].Whenthetemperatureofthemediumisincreasedfrom+10to+30,theabsorptionforfrequenciesbetween30and50kHzincreasesbyaboutthreetoone.Takingallthefactorsnotedaboveintoaccountwearriveatthefollowingapproximatevaluesfortheabsorptioncoefficient:atafrequencyof60kHz/3min=0.15m-1and~max=0.5-1;atafrequencyof200kHz/~min=0.6m-1andBmax=2m-1.TherelationshipsunderconsiderationareshowngraphicallyinFig.3.Intheupperpartofthediagramcurvesofg=f(L)areplottedforfivevaluesofthetotalangleintheradiator'sdirectivitydiagram,where(11)Thevaluesfortheminimum~minandrnaxil-num~max"transmittance"coefficientswereobtainedintheabsenceofaerosolsandrain.Theirdifferenceistheresultofthepossiblevariationsintemperatureovertherangefrom-30to+50~andinrelativehmnidityovertherangefrom10to98%.Theoverallvalueofthe"transmittance"isobtainedbymultiplyingthevaluesofgand0forgivenvaluesofL,f,andd.LITERATURECITED1.L.Bergman,Ultrasonics[Russiantranslation],Izd.Inostr.Lit.,Moscow(1957).2.V.A.Krasil'nikov,SonicandUltrasonicWaves[inRussian],Fizmatgiz,Moscow(1960).3.M.MokhtarandE.Richardson,ProceedingsoftheRoyalSociety,184(1945).附录B中文翻译在空气中超声测距G.E.RudashevskiandA.A.GorbatovUDC534,321.9:531.71.083.7在仪器技术中远程是最重要的一个问题。在空气中,从0.2米至10米非接触式测量距离时,涉及到了这个问题,例如,在测量时个别机件或结构单位的相对三维位置。有趣的是,是利用超声振动作为信息运输工具,开启了解决办法的可能性.在空气这个自然道具中,进行测量的是雇用成员和传感器之间距离0.5米的时候,允许振动频率高达500千赫,或当与障碍物之间修正距离延伸达10米时候,振动频率高达60千赫兹。超声波的产生:声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。超声波是指振动频率大于20KHz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在2~5MHz之间,常用为3~3.5MHz(每秒振动1次为1Hz,1MHz=106Hz,即每秒振动100万次,可闻波的频率在16-20000HZ之间)。超声波的两个主要参数:超声波的两个主要参数:频率:F≥20KHz;功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2;在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化现象”。超声波的作用:玻璃零件.玻璃和陶瓷制品的除垢是件麻烦事,如果把这些物品放入清洗液中,再通入超声波,,清洗液的剧烈振动冲击物品上的污垢,能够很快清洗干净。虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。而雷达的质量有几十,几百,几千千克,而在一些重要性能上的精确度。抗干扰能力等,蝙蝠远优与现代无线电定位器.深入研究动物身上各种器官的功能和构造,将获得的知识用来改进现有的设备,这是近几十年来发展起来的一门新学科,叫做仿生学。我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。应用超声波在空气中测量距离不同于其他的问题。虽然能否利用声波修正测距的可行性已经研究了很长一段时间,乍一看似乎很简单,但是目前只有为数不多的新发明使用这种适合实际目的方法,主要困难是在有严重特有变化的空气中提供一个可靠试验对象去接触三维声波。几乎所有的目前已知用来校验距离使用的,都是为了某些来自用来反射成员和后面的散热器信息样本,测量传播时间解决声音的办法。该未解调的声(超声)振动由传感器辐射的,本身并不是一个信息来源.在接收端,来自测试会员反射后,为了传递一些情报信息,因而被选定后,辐射振动一定会被调制。在这种情况下,超声波振动是在于调制信号的信息的承运人,即他们就是在测量仪器和测量稳定的对象之间建立了空间三维接触的手段。这一结论,但是,并不意味着分析和选择的参数承运人振动重要性小.正相反,承运人振动频率与信息沟通编码方法,与接收通频带和仪器中的辐射元素,与超声波空间特有的沟通渠道,以及测量精度是具有非常密切的联系方式。让我们谈具有普遍意义的空气中超声波测距问题,即:载波频率和的被普遍认为标准的声音数额的选择。(1)在Prad辐射声功率,B是平面波在介质中吸收系数为,L
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论