版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12 B.6 C.3 D.12.如图,将矩形(长方形)ABCD沿EF折叠,使点B与点D重合,点A落在G处,连接BE,DF,则下列结论:①DE=DF,②FB=FE,③BE=DF,④B、E、G三点在同一直线上,其中正确的是()A.①②③ B.①③④ C.②③④ D.①②④3.若是完全平方式,则常数k的值为()A.6 B.12 C. D.4.如图,△ABC的两个外角的平分线相交于D,若∠B=50°,则∠ADC=(
)A.60° B.80° C.65° D.40°5.如图,若AB∥CD,则α、β、γ之间的关系为()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°6.如图,在锐角三角形中,,的平分线交于点,、分别是和上的动点,则的最小值是()A.1 B. C.2 D.7.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C. D.8.已知是正整数,则满足条件的最大负整数m为()A.-10 B.-40 C.-90 D.-1609.若实数满足,且,则函数的图象可能是()A. B.C. D.10.下列运算正确的是().A.a2•a3=a6 B.5a﹣2a=3a2 C.(a3)4=a12 D.(x+y)2=x2+y2二、填空题(每小题3分,共24分)11.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(-2,0),点B在y轴上,若OA=2OB,则点B的坐标是______.12.如图,在中,,,垂直平分斜边,交于,是垂足,连接,若,则的长是__________.13.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则.14.如图,≌,其中,,则______.15.如图,边长为12的等边三角形ABC中,E是高AD上的一个动点,连结CE,将线段CE绕点C逆时针旋转60°得到CF,连结DF.则在点E运动过程中,线段DF长度的最小值是__________.16.如图,在等腰中,,,平分交于,于,若,则的周长等于_______;17.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x千米/时,根据题意列出方程_____.18.如图,面积为12的沿方向平移至位置,平移的距离是的三倍,则图中四边形的面积为__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy中,A(-3,4),B(-4,1),C(-1,1).(1)在图中作出△ABC关于x轴的轴对称图形△A′B′C′;(2)直接写出A,B关于y轴的对称点A″,B″的坐标.20.(6分)如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.21.(6分)如图,在中,是边上的高,是的角平分线,.(1)求的度数;(2)若,求的长.22.(8分)学校为了丰富同学们的社团活动,开设了足球班.开学初在某商场购进A,B两种品牌的足球,购买A品牌足球花费了2400元,购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花20元.(1)求所购买的A、B两种品牌足球的单价是多少元?(2)为响应“足球进校园”的号召,决定再次购进A,B两种品牌足球共30个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了10%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B两种品牌足球的总费用不超过2000元,那么此次最多可购买多少个B品牌足球?23.(8分)已知,如图所示,在中,.(1)作的平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若,,求的长.24.(8分)(1)化简:(2)设S=,a为非零常数,对于每一个有意义的x值,都有一个S的值对应,可得下表:x…﹣3﹣2﹣113567…S…22…仔细观察上表,能直接得出方程的解为.25.(10分)如图,已知△ABC的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m(直线m上各点的横坐标都为1).(1)作出△ABC关于x轴对称的图形,并写出点的坐标;(2)作出点C关于直线m对称的点,并写出点的坐标;(3)在x轴上画出点P,使PA+PC最小.26.(10分)解方程(1)(2)
参考答案一、选择题(每小题3分,共30分)1、B【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BD=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,CG=AB=×24=12,∴MG=CG=×12=6,∴HN=6,故选B.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.2、B【分析】由折叠的性质得出∠G=∠A,BE=DE,BF=DF,∠BEF=∠DEF,AE=GE,证出∠BEF=∠BFE,证出BE=BF,得出DE=DF,BE=DF=DE,①③正确,②不正确;证明Rt△ABE≌Rt△GDE(HL),得出∠AEB=∠GED,证出∠GED+∠BED=180°,得出B,E,G三点在同一直线上,④正确即可.【详解】∵矩形ABCD沿EF折叠,使点B与点D重合,
∴∠G=∠A,BE=DE,BF=DF,∠BEF=∠DEF,AE=GE,
∵四边形ABCD是矩形,
∴∠G=∠A=90°,AD∥BC,
∴∠DEF=∠BFE,
∴∠BEF=∠BFE,
∴BE=BF,
∴DE=DF,BE=DF=DE,
∴①③正确,②不正确;
在Rt△ABE和Rt△GDE中,,
∴Rt△ABE≌Rt△GDE(HL),
∴∠AEB=∠GED,
∵∠AEB+∠BED=180°,
∴∠GED+∠BED=180°,
∴B,E,G三点在同一直线上,④正确;
故选:B.【点睛】此题考查翻折变换的性质、矩形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握翻折变换的性质,证明BE=BF是解题的关键.3、D【解析】∵4a2+kab+9b2=(2a)2+kab+(3b)2,∴kab=±2⋅2a⋅3b,解得k=±12.故选D.4、C【分析】利用三角形的外角定理及内角定理推出∠ADC与∠B的关系,进而代入数据求出结果.【详解】设的两个外角为、.则(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知,∴.故选:.【点睛】本题考查三角形的内角和定理及外角定理,熟记基本定理并灵活运用是解题关键.5、C【分析】过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.6、B【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE,
当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,
∵,∠BAC=45°,此时△ABE为等腰直角三角形,
∴BE=,即BE取最小值为,
∴BM+MN的最小值是.
故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.7、C【解析】由题意可得:,∴,又∵,∴,∴,即.故选C.8、A【解析】依题意可得,-10m>0且是完全平方数,因此可求得m<0,所以满足条件的m的值为-10.故选A.9、C【分析】先根据且判断出,,再根据一次函数的图像与系数的关系得到图像过的象限即可.【详解】∵∴三个数中有1负2正或2负1正∵∴,,或,,两种情况∴,∵∴函数的图象过一三象限∵∴函数的图象向下平移,过一三四象限∴C选项正确故选:C.【点睛】本题主要考查一次函数图像的性质,解题关键是根据解析式各项的系数确定图形所过象限.10、C【解析】试题分析:选项A,根据同底数幂的乘法可得a2•a3=a5,故此选项错误;选项B,根据合并同类项法则可得5a﹣2a=3a,故此选项错误;选项C,根据幂的乘方可得(a3)4=a12,正确;选项D,根据完全平方公式可得(x+y)2=x2+y2+2xy,故此选项错误;故答案选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.二、填空题(每小题3分,共24分)11、(0,1)或(0,-1)【分析】先得出OA的长度,再结合OA=2OB且点B在y轴上,从而得出答案.【详解】∵点A的坐标是(-2,0),
∴OA=2,
又∵OA=2OB,
∴OB=1,
∵点B在y轴上,
∴点B的坐标为(0,1)或(0,-1),
故答案为:(0,1)或(0,-1).【点睛】本题主要考查了坐标与图形的性质,点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.12、【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.13、a5+5a4b+10a3b2+10a2b3+5ab4+b5【分析】分析题意得到规律,再把这个规律应用于解题.【详解】由题意分析可知,a5+5a4b+10a3b2+10a2b3+5ab4+b53故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5考点:找规律-数字的变化14、【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【详解】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°.故答案为120°.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.15、1【分析】取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时EG最短,再根据∠CAD=10°求解即可.【详解】解:如图,取AC的中点G,连接EG,∴.∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∠ECD=∠ECD,∴∠DCF=∠GCE,∵AD是等边△ABC底边BC的高,也是中线,∴,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时,,,∴DF=EG=1.故答案为:1.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.16、1【解析】试题解析:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.17、.【分析】设汽车的平均速度为x千米/时,则动车的平均速度为2.5x,根据题意可得:由乘动车到南京比坐汽车就要节省1.2小时,列方程即可.【详解】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,.故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.18、【分析】根据平移的性质可证四边形为平行四边形,且它与的高相等,CF=3BC,由的面积等于11可得的面积也等于11,并且可计算的面积等于71,继而求出四边形的面积.【详解】解:∵△DEF是△ABC平移得到的,平移的距离是的三倍,
∴AD∥CF,AD=CF,CF=3BC,
∴四边形ACFD是平行四边形,
∵S△ABC=11,△ABC和▱ACFD的高相等,
∴S▱ACFD=11×3×1=71,
∴S四边形ACED=S▱ACFD-S△DEF=S▱ACFD-S△ABC=71-11=60cm1,
故答案为:60cm1.【点睛】本题考查了平行四边形的判定和性质,平移的性质.理解平移前后对应点所连线段平行且相等是解决此题的关键.三、解答题(共66分)19、(1)见解析;(2)A″(3,4),B″(4,1).【分析】(1)正确找出对应点A′,B′,C′即可得出△ABC关于x轴的轴对称图形△A′B′C′;(2)根据关于y轴对称的点,纵坐标不变,横坐标改变符号直接写出即可.【详解】(1)如图所示;(2)点A(﹣3,4)、B(﹣4,1)关于y轴的对称点A″、B″的坐标分别为:A″(3,4),B″(4,1).【点睛】本题考查轴对称图形的作法以及关于坐标轴对称的点的坐标特点,灵活应用关于坐标轴对称的点的性质是解题的关键.20、当x为秒时,△PBE≌△QBE【分析】根据正方形的性质和全等三角形的判定可知当PB=QB时,△PBE≌△QBE.据此可求出时间.【详解】解:∵四边形ABCD是正方形.
∴∠ABD=∠DBC.∵BE=BE,
∴当PB=QB时,△PBE≌△QBE.∵P的速度是每秒1个单位,Q的速度是每秒2个单位,∴AP=x,BQ=2x,∴PB=8-x,
∴8-x=2x.
解得x=.
即当x为秒时,△PBE≌△QBE.【点睛】本题考查了正方形的性质和全等三角形的判定,掌握正方形的性质进行分析推理出全等所缺条件是解题的关键.21、(1)10°;(1)1.【分析】(1)由题知∠ABE=∠BAE=40°,根据三角形的一个外角等于与它不相邻的两个内角和求得∠AEC=80°,因为是边上的高,即可求解.(1)是的角平分线,结合题(1)得出∠DAC=30°,即可求解.【详解】解:(1)∵∴∴∵是边上得高,∴∴(1)∵是的角平分线,∴∴∵∴【点睛】本题考查了三角形外角的性质以及角平分线的性质,掌握这两个知识点是解题的关键.22、(1)购买A种品牌足球的单价为60元/个,购买B种品牌足球的单价为80元/个;(2)此次最多可购买1个B品牌足球.【分析】(1)设A,B两种足球单价分别为x,y.根据题中两个条件“购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍”列出和“购买一个B品牌足球比购买一个A品牌足球多花20元”列出.得到一个分式方程,最后要进行检验.(2)设设购买y个B品牌足球,则购买(10﹣y)个A品牌足球.然后根据(1)中的单价分别计算出调整后的单价,A的单价为:60×(1+10%),B单价为80×0.9.最后再由A,B两种品牌足球的总费用不超过2000元建立一元一次不等式.【详解】解:(1)设购买A种品牌足球的单价为x元/个,购买B种品牌足球的单价为y元/个,根据题意得:解得:答:设购买A种品牌足球的单价为60元/个,购买B种品牌足球的单价为80元/个.(2)设购买y个B品牌足球,则购买(10﹣y)个A品牌足球,根据题意得:60×(1+10%)(10﹣y)+80×0.9y≤2000,解得:.∵y为整数,∴y的最大值为1.答:此次最多可购买1个B品牌足球.【点睛】本题考察了分式方程的实际应用与一元一次不等式的实际应用.在分式方程应用中,找准题干给出的条件列出等量关系式是解题关键,最重要的是结果要进行检验;而一元一次不等式的不等符号要判断正确,常见的容易出错的不等符号与文字之间的关系有:不超过(),不低于(),至多(),至少().23、(1)答案见解析;(2)1【解析】(1)根据角平分线的尺规作图步骤,画出图形即可;
(2)过点D作DE⊥AB于点E,先证明DE=DC=6,BC=BE,再根据AD=10,求出AE,设BC=x,则AB=x+8,根据勾股定理求出x的值即可.【详解】(1)作图如下:(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 讲师课件教学课件
- 高中生未来的规划
- 世界知名产业园介绍经典案例
- 2010年影视经典营销案例分析报告
- 修理业职业生涯规划
- 想做教师的职业生涯规划
- 七年级猫的教案教学课件教学课件教学
- 咪咪猫小班课件
- ICU卧床病人的护理措施
- 护理学职业生涯规划
- 急性酒精中毒急救护理课件
- 汽车用压缩天然气电磁阀
- 1998年旧版劳动合同
- 24春国家开放大学《知识产权法》形考任务1-4参考答案
- 2024年4月自考00249国际私法答案及评分参考
- 数字经济国际税改“双支柱”方案的历史意义与现实应对专访中国国际税收研究会会长张志勇及国家税务总局国际税务司司长蒙玉英
- (2024年)新版药品管理法培训课件
- 20.第9课第2框课件《维护祖国统一和民族团结》
- (2024年)SA8000标准理解培训教程
- 新汉语水平考试 HSK(四级)试题及答案
- 音乐社会学的主要研究内容
评论
0/150
提交评论