




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10.5
隐函数及其求导法10.5.1一个方程的情形并不是所有的方程都能确定隐函数,就不能确定隐函数,现给出隐函数存在的充分条件.例如,方程y=f(x)满足方程定理10.7(隐函数存在定理1)则(1)存在x0
的某个邻域,在此邻域内存在唯一的函数隐函数的求导公式设二元函数F(x,y)满足(1)F(x,y)在的某一邻域内可偏导,(2)
y=f(x)具有连续导数,且且且
和
连续,或简写于是,得所以存在的一个邻域,在这个邻域内证明:现仅推导求导公式.将恒等式两边关于x求导,由全导数公式,得函数y=f(x)称为由方程F(x,y)=0所确定的隐函数.例1验证在点x=0某个邻域内存在唯一确定的一元函数y=f(x)满足方程xy–ex+ey=0,并求y=f(x)的导数.解令则在整个平面上连续,且由定理10.7,方程xy–ex+ey=0在点(0,0)的某个邻域内能唯一确定一个有连续导数的函数y=f(x),且解1令则例2
已知方程两边关于x求导,有解2解得定理10.8(隐函数存在定理)则在X0
的某个邻域内,存在唯一的函数y=f(X)设
X=(x1,x2,…,xn),函数F(x,y)满足(1)F(X,y)在的某一邻域内一阶偏导数连续满足方程F(X,y)=0,且以为例L
表示该椭球面与xOy
平面的交线.两个连续的二元函数满足F(x,y,z)=0.不满足定理的条件,在
的邻域内总存在一个连续的二元函数z=f(x,y)满足F(x,y,z)=0.满足定理的条件,在
的某个邻域内存在唯一的解令例3
设有隐函数其中F
具有连续的偏导数,求则解故先求例4设z=f(x,y)由方程求确定令则再求两边分别对y求偏导,得对代入得将解设例5设函数所确定,求方程组的情形定理10.9(隐函数组存在定理)设(1)Fk(X,Y)(k=1,…,m)在点(X0,Y0)的某个邻域内可偏导,且偏导数连续,(3)F关于Y
的雅可比(Jacobi)行列式满足:
则在点(X0,Y0)的某个邻域内存在唯一一组可偏导的隐函数y1=f1(X),…,ym=fm(X)满足方程组F(X,Y)=0.解方程组两边对x求导解得例6设及求解方程组的两边对x
求偏导,有移项,得例7设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工自己退休协议书
- 旧书捐赠协议书范文
- 异地合伙创业协议书
- 邮政离职保密协议书
- 转租中介保密协议书
- 有关车祸理赔协议书
- 就业意向协议书注意
- 矿山项目收购协议书
- 期房转让协议书公证
- 政府投资协议书模板
- 空调定期清洗消毒制度消毒
- 2024-2025学年下学期高二政治选必修2第三单元B卷
- 重庆市拔尖强基联盟2024-2025学年高三下学期3月联合考试历史试题(含答案)
- 果园种植管理合作合同范本
- 居室空间设计 课件 项目四 起居室空间设计
- 【历史】隋唐时期的科技与文化教学设计 2024-2025学年统编版七年级历史下册
- 劳务外包服务投标方案(技术标)
- 中国水泥回转窑行业发展监测及投资方向研究报告
- 初中英语牛津深圳版单词表(按单元顺序)七年级至九年级
- 枪支安全及使用指南
- 《肝衰竭诊治指南(2024版)》解读
评论
0/150
提交评论