版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角、、所对的边分别为、、,若,则()A. B. C. D.2.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.43.设全集,集合,.则集合等于()A. B. C. D.4.已知复数满足,则的值为()A. B. C. D.25.已知向量,,若,则与夹角的余弦值为()A. B. C. D.6.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.37.已知等差数列的前13项和为52,则()A.256 B.-256 C.32 D.-328.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.9.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.710.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.11.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A., B. C., D.,12.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量,满足约束条件则的最大值为________.14.设变量,,满足约束条件,则目标函数的最小值是______.15.设定义域为的函数满足,则不等式的解集为__________.16.将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.18.(12分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.(1)求抛物线的方程及点的坐标;(2)求的最大值.19.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.20.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.21.(12分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.22.(10分)如图,在直三棱柱中,,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.2、C【解析】
根据等差数列的求和公式即可得出.【详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.3、A【解析】
先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.4、C【解析】
由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.5、B【解析】
直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.【详解】依题意,,而,即,解得,则.故选:B.【点睛】本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.6、B【解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.7、A【解析】
利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,,得.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.8、A【解析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.【点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.9、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.10、B【解析】
利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.11、A【解析】
依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.12、B【解析】
由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.14、7【解析】作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值∴z最小值=F(2,1)=715、【解析】
根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论.【详解】设F(x),则F′(x),∵,∴F′(x)>0,即函数F(x)在定义域上单调递增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解为故答案为:【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.16、【解析】
先求出基本事件总数6×6=36,再由列举法求出“点数之和等于6”包含的基本事件的个数,由此能求出“点数之和等于6”的概率.【详解】基本事件总数6×6=36,点数之和是6包括共5种情况,则所求概率是.故答案为【点睛】本题考查古典概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)在曲线的参数方程中消去参数,可得出曲线的普通方程,将曲线的极坐标方程变形为,进而可得出曲线的直角坐标方程;(2)求出点到直线的最大距离,以及直线截圆所得弦长,利用三角形的面积公式可求得面积的最大值.【详解】(1)由曲线的参数方程得,.所以,曲线的普通方程为,将曲线的极坐标方程变形为,所以,曲线的直角坐标方程为;(2)曲线是圆心为,半径为为圆,圆心到直线的距离为,所以,点到直线的最大距离为,,因此,的面积为最大值为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程之间的相互转换,同时也考查了直线截圆所形成的三角形面积最值的计算,考查计算能力,属于中等题.18、(1),;(2)1.【解析】
(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【详解】(1)∵点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,|PF|=3,∴23,解得:p=2,∴抛物线C的方程为y2=4x,∵点P(2,n)(n>0)在抛物线C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴设直线l的方程为:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0设A(x1,y1),B(x2,y2),则y1,y2是y2+4my﹣4=0的两个不同实根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴当m时,取最大值1.【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19、(1)证明见解析(2)【解析】
(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,则,,,,,,,∵,∴,设是平面的一个法向量则,即,取得∴∴直线与平面所成的正弦值为【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.20、(1)答案见解析(2)【解析】
(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),,设(),恒大于零.在上单调递增.又,,,∴存在唯一,使,且时,时,①当时,恒成立,在单调递增,无极值,不合题意.②当时,可得当时,,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.③当时,可得当时,,当时,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版承包工地食堂餐厨垃圾处理合同模板3篇
- 2024蔬菜加工产品销售合作协议3篇
- 2024年股权转让合同标的及属性详细描述
- 2024年版物业托管服务协议版B版
- 二零二五版离婚协议书起草与审核合同2篇
- 2024版房屋赠与合同协议书大全
- 天津中德应用技术大学《教育技术与传播》2023-2024学年第一学期期末试卷
- 二零二五版家政服务+家庭健康促进合同3篇
- 太原幼儿师范高等专科学校《西医外科学医学免疫学与病原生物学》2023-2024学年第一学期期末试卷
- 二零二五年特殊用途变压器安装与性能测试合同2篇
- 对口升学《计算机应用基础》复习资料总汇(含答案)
- 《浸没式液冷冷却液选型要求》
- 迪士尼乐园总体规划
- 2024年江苏省苏州市中考数学试卷含答案
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 介绍蝴蝶兰课件
- 大学计算机基础(第2版) 课件 第1章 计算机概述
- 数字化年终述职报告
- 2024年职工普法教育宣讲培训课件
- 安保服务评分标准
- T-SDLPA 0001-2024 研究型病房建设和配置标准
评论
0/150
提交评论