版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二节空间几何体的表面积和体积考点一空间几何体的表面积[例1](1)某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6eq\r(5)B.30+6eq\r(5)C.56+12eq\r(5)D.60+12eq\r(5)(2)一个几何体的三视图如图所示,则该几何体的表面积为________.[自主解答](1)该三棱锥的直观图如图所示.据俯视图知,顶点P在底面上的投影D在棱AB上,且∠ABC=90°,据正、俯视图知,AD=2,BD=3,PD=4,据侧视图知,BC=4.综上所述,可知BC⊥平面PAB,PB=eq\r(PD2+BD2)=5,PC=eq\r(BC2+PB2)=eq\r(16+25)=eq\r(41),AC=eq\r(AB2+BC2)=eq\r(41),PA=eq\r(PD2+AD2)=2eq\r(5).∵PC=AC=eq\r(41),∴△PAC的边PA上的高为h=eq\r(PC2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(PA,2)))2)=6.∴S△PAB=eq\f(1,2)AB·PD=10,S△ABC=eq\f(1,2)AB·BC=10,S△PBC=eq\f(1,2)PB·BC=10,S△APC=eq\f(1,2)PA·h=6eq\r(5).故三棱锥的表面积为S△PAB+S△ABC+S△PBC+S△APC=30+6eq\r(5).(2)该几何体的直观图如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱.∴S表=2×(4+3+12)+2π-2π=38.[答案](1)B(2)38【方法规律】空间几何体的表面积的求法技巧(1)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个几何体的三视图如图所示,该几何体的表面积是()A.372B.360C.292解析:选B由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.∵下面长方体的表面积为8×10×2+2×8×2+10×2×2=232,上面长方体的表面积为8×6×2+2×8×2+2×6×2=152,又∵长方体表面积重叠一部分,∴几何体的表面积为232+152-2×6×2=360.高频考点考点二空间几何体的体积1.空间几何体的体积是每年高考的热点,题型既有选择题、填空题,也有解答题,难度偏小,属容易题.2.高考对空间几何体的体积的考查常有以下几个命题角度:(1)求简单几何体的体积;(2)求组合体的体积;(3)求以三视图为背景的几何体的体积.[例2](1)(·湖北高考)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4(2)(·浙江高考)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3(3)(·江苏高考)如图所示,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为________cm3[自主解答](1)由题意可知,由于上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体.根据三视图可知,最上面一个简单几何体是上底面圆的半径为2,下底面圆的半径为1,高为1的圆台,其体积V1=eq\f(1,3)π×(12+22+1×2)×1=eq\f(7,3)π;从上到下的第二个简单几何体是一个底面圆半径为1,高为2的圆柱,其体积V2=π×12×2=2π;从上到下的第三个简单几何体是边长为2的正方体,其体积V3=23=8;从上到下的第四个简单几何体是一个棱台,其上底面是边长为2的正方形,下底面是边长为4的正方形,棱台的高为1,故体积V4=eq\f(1,3)×(22+2×4+42)×1=eq\f(28,3),比较大小可知答案选C.(2)根据几何体的三视图可知,所求几何体是一个长方体截去一个三棱锥,则几何体的体积V=6×6×3-eq\f(1,3)×eq\f(1,2)×4×4×3=100cm3.(3)由题意,四边形ABCD为正方形,连接AC,交BD于O,则AC⊥BD.由面面垂直的性质定理,可证AO⊥平面BB1D1D.四棱锥底面BB1D1D的面积为3eq\r(2)×2=6eq\r(2),从而VABB1D1D=eq\f(1,3)×OA×S长方形BB1D1D=6.[答案](1)C(2)B(3)6空间几何体体积问题的常见类型及解题策略(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.1.(·广东高考)某四棱台的三视图如图所示,则该四棱台的体积是()A.4B.eq\f(14,3)C.eq\f(16,3)D.6解析:选B由四棱台的三视图可知,台体上底面积S1=1×1=1,下底面积S2=2×2=4,高h=2,代入台体的体积公式V=eq\f(1,3)(S1+eq\r(S1S2)+S2)h=eq\f(1,3)×(1+eq\r(1×4)+4)×2=eq\f(14,3).2.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π解析:选A这个几何体由上、下两部分组成,下半部分是一个长方体,其中长、宽、高分别为6+2+2=10,1+2+1=4,5;上半部分是一个横放的半圆柱,其中底面半径为eq\f(6,2)=3,母线长为2,故V=10×4×5+eq\f(1,2)π×32×2=200+9π.考点三与球有关的组合体[例3](·沈阳模拟)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球OA.eq\f(3\r(17),2)B.2eq\r(10)C.eq\f(13,2)D.3eq\r(10)[自主解答]如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=eq\f(1,2)BC=eq\f(5,2),OM=eq\f(1,2)AA1=6,所以球O的半径R=OA=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,2)))2+62)=eq\f(13,2).[答案]C【互动探究】侧棱和底面边长都是3eq\r(2)的正四棱锥的外接球半径是多少?解:依题意得,该正四棱锥的底面对角线的长为3eq\r(2)×eq\r(2)=6,高为eq\r(3\r(2)2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)×6))2)=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.【方法规律】与球有关的组合体的类型及解法(1)球与旋转体的组合通常作出它们的轴截面解题.(2)球与多面体的组合,通常过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.(·新课标全国卷Ⅰ)如图所示,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积为()A.eq\f(500π,3)cm3B.eq\f(866π,3)cm3C.eq\f(1372π,3)cm3D.eq\f(2048π,3)cm3解析:选A设球半径为Rcm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面的距离为(R-2)cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=eq\f(4,3)πR3=eq\f(4,3)π×53=eq\f(500π,3)cm3.——————————[课堂归纳——通法领悟]————————————————1种思想——转化与化归思想计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2种方法——割补法与等积法(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023届高考化学鲁科版一轮复习学案-第八章第4课时 盐类的水解及应用
- 2024年度土石方工程承包协议
- 课程设计t梁总结
- 车辆牌照过户协议范本(2024年)
- 安全管理体系构建与实践考核试卷
- 城市建设2024监理任务具体协议
- 异戊二烯纤维的制造工艺与性能研究考核试卷
- 2024年期高品质井盖买卖协议范本
- 《国有企业合规制度研究》
- 《槲皮素通过BMPR2调控线粒体未折叠蛋白反应(UPRmt)减轻缺氧性肺动脉高压的作用机制研究》
- 小学心理健康课教案分享-《身体“红绿灯”》
- 2022年信息科技课程新课标义务教育信息科技课程标准2022版解读课件
- 小学生防火安全教育课件
- 口语交际:商量(教学设计)2023-2024学年统编版语文二年级上册
- 乡土嵌合:农村社会工作的实践面向与行动路径
- 2023年中国铁路国际有限公司招聘考试试题及答案
- 2024年大学生信息素养大赛(省赛)考试题库(含答案)
- 国资国企企业学习二十届三中全会精神专题培训
- 过敏性紫癜的护理培训课件
- 监理工作重点、难点分析及解决方案
- 雪梨产业规划专项研究报告
评论
0/150
提交评论