浙江省湖州市吴兴区十校联考2022年数学九上期末教学质量检测模拟试题含解析_第1页
浙江省湖州市吴兴区十校联考2022年数学九上期末教学质量检测模拟试题含解析_第2页
浙江省湖州市吴兴区十校联考2022年数学九上期末教学质量检测模拟试题含解析_第3页
浙江省湖州市吴兴区十校联考2022年数学九上期末教学质量检测模拟试题含解析_第4页
浙江省湖州市吴兴区十校联考2022年数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.顺次连接四边形ABCD各边的中点,所得四边形是()A.平行四边形B.对角线互相垂直的四边形C.矩形D.菱形2.关于抛物线,下列说法错误的是()A.开口方向向上 B.对称轴是直线C.顶点坐标为 D.当时,随的增大而增大3.用配方法解一元二次方程时,方程变形正确的是()A. B. C. D.4.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.85.关于的一元二次方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根6.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根 B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根7.点P(﹣1,2)关于原点对称的点Q的坐标为()A.(1,2) B.(﹣1,﹣2) C.(1.﹣2) D.(﹣1,﹣2)8.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).A.1 B.2 C.3 D.49.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是()A. B. C. D.10.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.将抛物线向下平移个单位,那么所得抛物线的函数关系是________.12.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.13.若方程的一个根,则的值是__________.14.已知一元二次方程有一个根为,则的值为________________.15.如图,在△ABC中,D、E分别是边AB、AC上的两点,且DEBC,BD=AE,若AB=12cm,AC=24cm,则AE=_____.16.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),17.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.18.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.三、解答题(共66分)19.(10分)用配方法解方程:x2﹣8x+1=020.(6分)已知关于x的方程x2-(m+3)x+m+1=1.(1)求证:不论m为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.21.(6分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.求出每天的销售利润元与销售单价元之间的函数关系式;求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量23.(8分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.24.(8分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)将以原点为旋转中心旋转得到,画出旋转后的.(2)平移,使点的对应点坐标为,画出平移后的(3)若将绕某一点旋转可得到,请直接写出旋转中心的坐标.25.(10分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.26.(10分)(1)计算:(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:连接原四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:如图,根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.2、C【分析】根据二次函数的图象和性质逐一进行判断即可.【详解】A.因为二次项系数大于0,所以开口方向向上,故正确;B.对称轴是直线,故正确;C.顶点坐标为,故错误;D.当时,随的增大而增大,故正确;故选:C.【点睛】本题主要考查二次函数,掌握二次函数的图象和性质是解题的关键.3、B【详解】,移项得:,两边加一次项系数一半的平方得:,所以,故选B.4、B【解析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.5、A【分析】先写出的值,计算的值进行判断.【详解】

方程有两个不相等的实数根故选A【点睛】本题考查一元二次方程根的判别式,是常见考点,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记公式并灵活应用公式是解题关键.6、A【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【详解】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,

∴(-1)2-4+c=0,

解得:c=3,∵所抄的c比原方程的c值小2.

故原方程中c=5,即方程为:x2+4x+5=0

则b2-4ac=16-4×1×5=-4<0,

则原方程的根的情况是不存在实数根.

故选:A.【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c的值是解题关键.7、C【分析】根据关于原点对称两个点坐标关系:横、纵坐标均互为相反数可得答案.【详解】解:点P(﹣1,2)关于原点对称的点Q的坐标为(1,﹣2),故选:C.【点睛】此题考查的是求一个点关于原点对称的对称点,掌握关于原点对称两个点坐标关系:横、纵坐标均互为相反数是解决此题的关键.8、B【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x==﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.9、D【解析】试题分析:∵,∴对称轴为x=1,P2(3,),P3(5,)在对称轴的右侧,y随x的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P1(﹣1,)与(3,)关于对称轴对称,故,故选D.考点:二次函数图象上点的坐标特征.10、A【分析】由题意可得,共有10种等可能的结果,其中从口袋中任意摸出一个球是白球的有5种情况,利用概率公式即可求得答案.【详解】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选A.【点睛】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律写出平移后顶点坐标,然后利用顶点式写出平移后的抛物线解析式.【详解】解:的顶点坐标为,把点向下平移个单位得到的对应点的坐标为,所以平移后的抛物线的解析式是.故答案为:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12、2或1【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.【详解】解:设AP=xcm.则BP=AB﹣AP=(5﹣x)cm以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当AD:PB=PA:BC时,,解得x=2或1.②当AD:BC=PA+PB时,,解得x=1,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或1.故答案为2或1.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.13、【分析】将m代入方程,再适当变形可得的值.【详解】解:将m代入方程得,即,所以.故答案为:2020.【点睛】本题考查了一元二次方程的代入求值,灵活的进行代数式的变形是解题的关键.14、-1【分析】根据一元二次方程的根的定义,即可求解.【详解】∵一元二次方程有一个根为,∴,解得:k=-1,故答案是:-1.【点睛】本题主要考查一元二次方程方程根的定义,掌握一元二次方程根的定义,是解题的关键.15、1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案.【详解】解:∵DE//BC,∴,即,解得:AE=1.故答案为:1cm.【点睛】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.16、∠ACP=∠B(或).【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当时,△ACP∽△ABC.故答案为:∠ACP=∠B(或).【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.17、1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵==,解得:旗杆的高度=×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.18、或【解析】由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点即可.【详解】解:由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为或.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C点.三、解答题(共66分)19、,.【解析】试题分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.试题解析:∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得,.考点:解一元二次方程-配方法.20、(1)见解析;(2)【分析】(1)根据判别式即可求出答案.(2)将x=4代入原方程可求出m的值,求出m的值后代入原方程即可求出x的值.【详解】解:(1)由题意可知:△=(m+3)2﹣4(m+1)=m2+2m+5=m2+2m+1+4=(m+1)2+4,∵(m+1)2+4>1,∴△>1,∴不论m为何值,方程都有两个不相等的实数根.(2)当x=4代入x2﹣(m+3)x+m+1=1得解得m=,将m=代入x2﹣(m+3)x+m+1=1得∴原方程化为:3x2﹣14x+8=1,解得x=4或x=腰长为时,,构不成三角形;腰长为4时,该等腰三角形的周长为4+4+=所以此三角形的周长为.【点睛】本题考查了一元二次方程,熟练的掌握一元二次方程的解法是解题的关键.21、1米.【分析】过A作AE⊥CD垂足为E,设AE=x米,再利用锐角三角函数关系得出BE=x,CE=x,根据BC=BE﹣CE,得到关于x的方程,即可得出答案.【详解】解:过A作AE⊥CD垂足为E,设AE=x米,在Rt△ABE中,tan∠B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE﹣CE,∴x﹣x=150,解得:x=1.答:小岛A到公路BD的距离为1米.【点睛】本题考查了三角函数和一元一次方程的问题,掌握特殊三角函数值和解一元一次方程的方法是解题的关键.22、;当时,;销售单价应该控制在82元至90元之间.【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:;,抛物线开口向下.,对称轴是直线,当时,;当时,,解得,.当时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得,解得.,,销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.23、k<1;k=1.【解析】试题分析:(1)、当抛物线与x轴有两个不同的交点,则△>0,从而求出k的取值范围;(2)、顶点在x轴上则说明顶点的纵坐标为0.试题解析:(1)、∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,即16-4k+4>0.解得k<1.(2)、∵抛物线的顶点在x轴上,∴顶点纵坐标为0,即=0.解得k=1.考点:二次函数的顶点24、(1)见解析;(2)见解析;(3)旋转中心坐标为.【分析】(1)依据旋转的性质确定出A1,B1,C1,然后用线段吮吸连接即可得到△A1B1C1;(2)依据点A的对应点A2坐标为(3,-3),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论