新疆维吾尔自治区乌鲁木齐市2022年数学九上期末监测模拟试题含解析_第1页
新疆维吾尔自治区乌鲁木齐市2022年数学九上期末监测模拟试题含解析_第2页
新疆维吾尔自治区乌鲁木齐市2022年数学九上期末监测模拟试题含解析_第3页
新疆维吾尔自治区乌鲁木齐市2022年数学九上期末监测模拟试题含解析_第4页
新疆维吾尔自治区乌鲁木齐市2022年数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,AB是⊙O的直径,AC,BC分别与⊙O交于点D,E,则下列说法一定正确的是()A.连接BD,可知BD是△ABC的中线 B.连接AE,可知AE是△ABC的高线C.连接DE,可知 D.连接DE,可知S△CDE:S△ABC=DE:AB2.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为()A.2或-2 B.2 C.-2 D.03.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离4.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.5.下列说法正确的是()A.所有菱形都相似 B.所有矩形都相似C.所有正方形都相似 D.所有平行四边形都相似6.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)181186181186方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁7.关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.8.如图,在△ABC中,DE//BC,,S梯形BCED=8,则S△ABC是()A.13 B.12 C.10 D.99.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为,则得方程()A. B.C. D.10.若抛物线与坐标轴有一个交点,则的取值范围是()A. B. C. D.11.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是()A. B. C. D.12.一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或80二、填空题(每题4分,共24分)13.为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)

4

5

6

9

户数

3

4

2

1

则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨 B.极差是3吨 C.平均数是5.3吨 D.众数是5吨14.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为_____.15.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为________.16.分解因式:=__________17.已知和是方程的两个实数根,则__________.18.如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若△PAB与△PCD是相似三角形,则BP的长为_____________三、解答题(共78分)19.(8分)已知为实数,关于的方程有两个实数根.(1)求实数的取值范围.(2)若,试求的值.20.(8分)如图,在平面直角坐标系中,将一个图形绕原点顺时针方向旋转称为一次“直角旋转,已知的三个顶点的坐标分别为,,,完成下列任务:(1)画出经过一次直角旋转后得到的;(2)若点是内部的任意一点,将连续做次“直角旋转”(为正整数),点的对应点的坐标为,则的最小值为;此时,与的位置关系为.(3)求出点旋转到点所经过的路径长.21.(8分)如图,已知抛物线与x轴交于点A、B,与y轴分别交于点C,其中点,点,且.(1)求抛物线的解析式;(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点M的坐标.22.(10分)(1)解方程:(2)已知关于的方程无解,方程的一个根是.①求和的值;②求方程的另一个根.23.(10分)(1)解方程:(2)某快递公司,今年三月份与五月份完成投递的快递总件数分别为万件和万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均増长率.24.(10分)如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=,cos∠DBC=,求DC和AB的长.25.(12分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个,因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,定价为多少元?26.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.(1)求证:;(2)过点C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆周角定理,相似三角形的判定和性质一一判断即可.【详解】解:A、连接BD.∵AB是直径,∴∠ADB=90°,∴BD是△ABC的高,故本选项不符合题意.B、连接AE.∵AB是直径,∴∠AEB=90°,∴BE是△ABC的高,故本选项符合题意.C、连接DE.可证△CDE∽△CBA,可得,故本选项不符合题意.D、∵△CDE∽△CBA,可得S△CDE:S△ABC=DE2:AB2,故本选项不符合题意,故选:B.【点睛】本题考查了圆周角定理、相似三角形的判定以及性质,辅助线的作图是解本题的关键2、B【分析】根据一元二次方程的定义可得:|m|=1,且m+1≠0,再解即可.【详解】解:由题意得:|m|=1,且m+1≠0,

解得:m=1.

故选:B.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”.3、C【解析】分析:首先画出图形,根据点的坐标得到圆心到X轴的距离是4,到Y轴的距离是3,根据直线与圆的位置关系即可求出答案.解答:解:圆心到X轴的距离是4,到y轴的距离是3,4=4,3<4,∴圆与x轴相切,与y轴相交,故选C.4、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.5、C【分析】根据相似多边形的定义一一判断即可.【详解】A.菱形的对应边成比例,对应角不一定相等,故选项A错误;B.矩形的对应边不一定成比例,对应角一定相等,故选项B错误;C.正方形对应边一定成比例,对应角一定相等,故选项C正确;D.平行四边形对应边不一定成比例,对应角不一定相等,故选项D错误.故选:C.【点睛】本题考查了相似多边形的判定,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.6、B【分析】根据平均数与方差的意义解答即可.【详解】解:,乙与丁二选一,又,选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.7、C【解析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.8、D【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ADE的面积,再加上BCED的面积即可.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∴,∵S梯形BCED=8,∴∴故选:D【点睛】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.9、C【分析】设调价百分率为x,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x,则:故选:C.【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.10、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,

抛物线开口向上,m2≥0,

∴抛物线与x轴没有交点,与y轴有1个交点,

∴(2m-1)2-4m2<0

解得故选:A.【点睛】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x轴交点的关系.11、D【解析】试题分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正确;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D错误.故选D.点睛:本题考查了相似三角形的判定与性质.注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成比例.注意数形结合思想的应用.12、B【解析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.【详解】解:,所以,,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为,∴菱形的面积.故选:B.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.也考查了三角形三边的关系和菱形的性质.二、填空题(每题4分,共24分)13、B【详解】解∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A正确;∴众数是:5吨,故D正确;∴极差是:9﹣4=5吨,故B错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故C正确.故选B.14、2或﹣2【解析】利用二次函数图象上点的坐标特征找出当y=2时x的值,结合当a≤x≤a+2时函数有最小值2,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=2时,有x2﹣2x+2=2,解得:x2=0,x2=2.∵当a≤x≤a+2时,函数有最小值2,∴a=2或a+2=0,∴a=2或a=﹣2,故答案为:2或﹣2.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=2时x的值是解题的关键.15、答案不唯一,如y=x2﹣4x+2,即y=(x﹣2)2﹣1.【分析】由题意得,设,此时可令的数,然后再由与y轴的交点坐标为(0,2)求出k的值,进而可得到二次函数的解析式.【详解】解:设,将(0,2)代入,解得,故或y=x2﹣4x+2.故答案为:答案不唯一,如y=x2﹣4x+2,即y=(x﹣2)2﹣1.考点:1.二次函数的图象及其性质;2.开放思维.16、【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a).17、1【分析】根据根与系数的关系可得出x1+x2=-3、x1x2=-1,将其代入x12+x22=(x1+x2)2-2x1x2中即可求出结论.【详解】解:∵x1,x2是方程的两个实数根,

∴x1+x2=-3,x1x2=-1,

∴x12+x22=(x1+x2)2-2x1x2=(-3)2-2×(-1)=1.

故答案为:1.【点睛】本题考查了一元二次方程的根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.18、1或2【分析】设BP=x,则CP=BC-BP=3-x,易证∠B=∠C=90°,根据相似三角形的对应顶点分类讨论:①若△PAB∽△PDC时,列出比例式即可求出BP;②若△PAB∽△DPC时,原理同上.【详解】解:设BP=x,则CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC时∴即解得:x=1即此时BP=1;②若△PAB∽△DPC时∴即解得:即此时BP=1或2;综上所述:BP=1或2.故答案为:1或2.【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解决此题的关键.三、解答题(共78分)19、(1).(2)-3.【分析】(1)把方程化为一般式,根据方程有两个实数根,可得,列出关于的不等式,解出的范围即可;(2)根据一元二次方程根与系数的关系,可得,,再将原等式变形为

,然后整体代入建立关于的方程,解出值并检验即可.【详解】(1)解:原方程即为.,∴.∴.∴;(2)解:由根系关系,得,∵,∴∴.即.解得,或∵∴.故答案为(1).(2)-3.【点睛】本题考查一元二次方程根的判别式及应用,一元二次方程的根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.20、(1)图见解析;(2)2,关于中心对称;(3).【分析】(1)根据图形旋转的性质画出旋转后的△即可;(2)根据中心对称的性质即可得出结论;(3)根据弧长公式求解即可.【详解】解:(1)如图,△即为所求;(2)点的对应点的坐标为,点与关于点对称,.故答案为:2,关于中心对称.(3)∵点A坐标为∴,则旋转到点所经过的路径长.【点睛】本题考查了根据旋转变换作图以及弧长公式,解答本题的关键是根据网格结构找出对应点的位置.21、(1);(2)当时,S最大,此时;(3)或【分析】(1)先根据射影定理求出点,设抛物线的解析式为:,将点代入求出,然后化为一般式即可;(2)过点P作y轴的平行线交BC于点E,设,用待定系数法分别求出直线BC,直线AC,直线PD的解析式,表示出点E,点D的坐标,然后根据三角形面积公式列出二次函数解析式,利用二次函数的性质求解即可;(3)分两种情况求解:当时和当时.【详解】(1)∵,,∴,.∵,∴由射影定理可得:,∴,∴点,设抛物线的解析式为:,将点代入上式得:,∴抛物线的解析式为:;(2)过点P作y轴的平行线交BC于点E,设,设,把,代入得,∴,∴,∴,同样的方法可求,故可设,把代入得,联立解得:,∴,,故当时,S最大,此时;(3)由题知,,当时,,∴点C与点M关于对称轴对称,∴;当时,过M作于F,过F作y轴的平行线,交x轴于G,交过M平行于x轴的直线于K,∵∠,BFM=∠BGF,∴△MFK∽△FGB,同理可证:,∴,,设,则,∴,∴,代入,解得,或(舍去),∴,故或.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的图像与性质,一次函数图像交点坐标与二元一次方程组解的关系,相似三角形的判定与性质,以及分类讨论的数学思想,难度较大,属中考压轴题.22、(1),;(2)①,,②另一个根是1.【分析】(1)用因式分解法解方程即可;(2)①根据分式方程无解,先求出m的值,然后将m代入一元二次方程中求出k的值即可;②根据根与系数的关系可求出另一个根.【详解】(1)原方程可化为或解得:,(2)①解:将分式方程两边同时,得到,解得∵分式方程无解,,把代入方程,得求得②根据一元二次方程根与系数的关系可得∵∴另外一个根是1【点睛】本题主要考查解一元二次方程及一元二次方程根与系数的关系,分式方程无解问题,掌握分式方程无解问题的方法及一元二次方程根与系数的关系是解题的关键.23、(1);(2)该快递公司投递总件数的月平均增长率为10%.【分析】(1)用因式分解法即可求解;(2)五月份完成投递的快递总件数=三月份完成投递的快递总件数×(1+x)2,进而列出方程,解方程即可.【详解】(1)∴∴4x-3=0或2x+1=0∴(2)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(不合题意舍去)答:该快递公司投递总件数的月平均增长率为10%.【点睛】此题主要考查了一元二次方程的应用---增长率问题,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.24、DC=6;A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论