版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B. C. D.2.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A.57° B.66° C.67° D.44°3.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A. B. C. D.4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.5.反比例函数图象上的两点为,且,则下列表达式成立的是()A. B. C. D.不能确定6.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.7.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是()A. B. C. D.8.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2) B.图象位于第二、四象限C.若x<﹣2,则0<y<3 D.在每一个象限内,y随x值的增大而减小9.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=()A.0 B.3 C.16 D.910.已知点P在线段AB上,且AP∶PB=2∶3,那么AB∶PB为()A.3∶2 B.3∶5 C.5∶2 D.5∶311.如图,一根电线杆垂直于地面,并用两根拉线,固定,量得,,则拉线,的长度之比()A. B. C. D.12.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=40°,则∠BAD的大小为()A.60º B.30º C.45º D.50º二、填空题(每题4分,共24分)13.如图,AB为⊙O的直径,CD是弦,且CD⊥AB于点P,若AB=4,OP=1,则弦CD所对的圆周角等于_____度.14.如图,在平面直角坐标系中,和是以坐标原点为位似中心的位似图形,且点B(3,1),,(6,2),若点(5,6),则点的坐标为________.15.半径为4的圆中,长为4的弦所对的圆周角的度数是_________.16.关于的方程没有实数根,则的取值范围为____________17.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.18.2018年我国新能源汽车保有量居世界前列,2016年和2018年我国新能源汽车保有量分别为51.7万辆和261万辆.设我国2016至2018年新能源汽车保有量年平均增长率为,根据题意,可列方程为______.三、解答题(共78分)19.(8分)如图,在中,,是的平分线,是上一点,以为半径的经过点.(1)求证:是切线;(2)若,,求的长.20.(8分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.21.(8分)某土特产专卖店销售甲种干果,其进价为每千克40元,(物价局规定:出售时不得低于进价,又不得高于进价的1.5倍销售).试销后发现:售价x(元/千克)与日销售量y(千克)存在一次函数关系:y=﹣10x+1.若现在以每千克x元销售时,每天销售甲种干果可盈利w元.(盈利=售价﹣进价).(1)w与x的函数关系式(写出x的取值范围);(2)单价为每千克多少元时,日销售利润最高,最高为多少元;(3)专卖店销售甲种干果想要平均每天获利2240元的情况下,为尽可能让利于顾客,赢得市场,则售价应定为每千克多少元.22.(10分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?23.(10分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与反比例函数在第一象限内的图象交于点,且点的横坐标为.过点作轴交反比例函数的图象于点,连接.(1)求反比例函数的表达式.(2)求的面积.24.(10分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).25.(12分)已知关于的一元二次方程(为实数且).(1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都是整数,求正整数的值.26.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.【详解】∵抛物线与轴交于、两点∴A(-4,0),B(4,0),即OA=4.在直角三角形COB中BC=∵Q是AP上的中点,O是AB的中点∴OQ为△ABP中位线,即OQ=BP又∵P在圆C上,且半径为2,∴当B、C、P共线时BP最大,即OQ最大此时BP=BC+CP=7OQ=BP=.【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.2、A【分析】由圆周角定理定理得出∠AOC,再由等腰三角形的性质得到答案.【详解】解:∵∠AOC与∠ADC分别是弧AC对的圆心角和圆周角,
∴∠AOC=2∠ADC=66°,在△CAO中,AO=CO,∴∠ACO=∠OAC=,故选:A【点睛】本题考查了圆周角定理,此题难度不大,注意在同圆或等圆中,同弧或等弧所对圆周角等于它所对圆心角的一半,注意数形结合思想的应用.3、C【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【详解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.4、D【解析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.5、D【分析】根据反比例函数图象上点的坐标特征得到,,然后分类讨论:0<<得到;当<0<得到<;当<<0得到.【详解】∵反比例函数图象上的两点为,,∴,∴,,当0<<,;当<0<,<;当<<0,;故选D.【点睛】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.6、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.7、C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.8、D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】A、∵(﹣3)×2=﹣6,∴图象必经过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C、∵x=-2时,y=3且y随x的增大而而增大,∴x<﹣2时,0<y<3,故本选项正确;D、函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选D.【点睛】本题考查的是反比例函数的性质,在解答此类题目时要注意其增减性限制在每一象限内,不要一概而论.9、C【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m+1.故设抛物线解析式为y=(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值.【详解】∵抛物线y=x2+bx+c过点A(m,n),B(m+8,n),∴对称轴是x==m+1.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故选:C.【点睛】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.10、D【分析】根据比例的合比性质直接求解即可.【详解】解:由题意AP∶PB=2∶3,AB∶PB=(AP+PB)∶PB=(2+3)∶3=5∶3;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答.11、D【分析】根据锐角三角函数可得:和,从而求出.【详解】解:在Rt△AOP中,,在Rt△BOP中,,∴故选D.【点睛】此题考查的是锐角三角函数,掌握锐角三角函数的定义是解决此题的关键.12、D【分析】把∠DAB归到三角形中,所以连结BD,利用同弧所对的圆周角相等,求出∠A的度数,AB为直径,由直径所对圆周角为直角,可知∠DAB与∠B互余即可.【详解】连结BD,∵同弧所对的圆周角相等,∴∠B=∠C=40º,∵AB为直径,∴∠ADB=90º,∴∠DAB+∠B=90º,∴∠DAB=90º-40º=50º.故选择:D.【点睛】本题考查圆周角问题,关键利用同弧所对圆周角转化为三角形的内角,掌握直径所对圆周角为直角,会利用余角定义求角.二、填空题(每题4分,共24分)13、60或1.【分析】先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出和的度数.【详解】如图,连接OC,OD,BC,BD,AC,AD,∵AB为⊙O的直径,AB=4,∴OB=2,又∵OP=1,∴BP=1,∵CD⊥AB,∴CD垂直平分OB,∴CO=CB,DO=DB,又OC=OD,∴OC=CB=DB=OD,∴四边形ODBC是菱形,∴∠COD=∠CBD,∵∠COD=2∠CAD,∴∠CBD=2∠CAD,又∵四边形ADBC是圆内接四边形,∴∠CAD+∠CBD=180°,∴∠CAD=60°,∠CBD=1°,∵弦CD所对的圆周角有∠CAD和∠CBD两个,故答案为:60或1.【点睛】本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.14、(2.5,3)【分析】利用点B(3,1),B′(6,2)即可得出位似比进而得出A的坐标.【详解】解:∵点B(3,1),B′(6,2),点A′(5,6),∴A的坐标为:(2.5,3).故答案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.15、或【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得是等边三角形,再利用圆周角定理,即可得出答案.【详解】.如图所示在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵,∴∴是等边三角形∴∴∴∴所对的圆周角的度数为或故答案为:或.【点睛】本题考查了圆周角的问题,掌握圆周角定理是解题的关键.16、【分析】根据题意利用根的判别式进行分析计算,即可求出的取值范围.【详解】解:∵关于的方程没有实数根,∴,解得.故答案为:.【点睛】本题考查根的判别式相关,熟练掌握一元二次方程中,当时,方程没有实数根是解答此题的关键.17、1:1.【解析】根据位似变换的性质定义得到四边形ABCD与四边形A′B′C′D′相似,根据相似多边形的性质计算即可.【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′相似,相似比为1:2,∴四边形ABCD与四边形A′B′C′D′的面积比是1:1,故答案为:1:1.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.18、【分析】根据增长率的特点即可列出一元二次方程.【详解】设我国2016至2018年新能源汽车保有量年平均增长率为,根据题意,可列方程为故答案为:.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程.三、解答题(共78分)19、(1)证明见解析;(2).【分析】(1)如图,连接OD.欲证BC是⊙O切线,只需证明OD⊥BC即可.(2)过点D作DE⊥AB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过设未知数利用勾股定理得出AC的长.【详解】(1)证明:如解图1所示,连接.平分.,,,,,,,是的切线;(2)如解图2,过作于,又平分,,,,,在中,,由勾股定理,得,设,则,在中,则由勾股定理,得:,解得:,的长为.【点睛】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了角平分线的性质,勾股定理.20、(1)①菱形,理由见解析;②AF=1;(2)秒.【分析】(1)①先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;②根据勾股定理即可求AF的长;(2)分情况讨论可知,P点在BF上;Q点在ED上时;才能构成平行四边形,根据平行四边形的性质列出方程求解即可.【详解】(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=1,∴AF=1.(2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒1cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=1t,QA=12﹣4t,∴1t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.【点睛】本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.21、(1)w=﹣10x2+1100x﹣28000,(40≤x≤60);(2)单价为每千克55元时,日销售利润最高,最高为2250元;(3)售价应定为每千克54元.【分析】(1)根据盈利=每千克利润×销量,列函数关系式即可;(2)根据二次函数的性质即可得到结论;(3)根据每天获利2240元列出方程,然后取较小值即可.【详解】解:(1)根据题意得,w=(x﹣40)•y=(x﹣40)•(﹣10x+1)=﹣10x2+1100x﹣28000,(40≤x≤60);(2)由(1)可知w=﹣10x2+1100x﹣28000,配方得:w=﹣10(x﹣55)2+2250,∴单价为每千克55元时,日销售利润最高,最高为2250元;(3)由(1)可知w=﹣10x2+1100x﹣28000,∴2240=﹣10x2+1100x﹣28000,解得:x1=54,x2=56,由题意可知x2=56(舍去),∴x=54,答:售价应定为每千克54元.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,正确得出w与x之间的关系是解题关键.22、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与的关系式,求出即可.试题解析:设每个商品的定价是元.由题意,得整理,得解得都
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xxx尖凿项目可行性研究报告(立项说明)
- 年产xxx快硬硅酸盐水泥项目可行性研究报告(创业计划)
- 新建人体感应壁灯项目立项申请报告
- 脱发与养发日常护理
- 小班健康教案《网小鱼》
- 大班体育游戏教案及教学反思《调皮的小皮球》
- 小班科学公开课教案及教学反思《苹果种子的故事》
- 大班语言教案:假如没有水
- 6的乘法口诀(教案)二年级上册数学人教版
- 第三单元《物态变化》1.温度和温度计(双基过关)(原卷版)
- 北京市海淀区2023-2024学年高二上学期期末考试 英语 含答案
- 《公共科目》军队文职考试试题及解答参考(2024年)
- 2024年秋季新人教版七年级上册英语全册教案设计
- 2024年事业单位招聘考试公共基础知识题库及答案
- 法律服务投标方案(技术方案)
- 2024年人教版七年级上册历史第三单元综合检测试卷及答案
- 高级政工师职称面试题
- 颈动脉斑块科普知识PPT参考幻灯片
- 贵州烟草公司黔南公司低压配电系统安全性评估报告(最终稿)
- 封头容积、质量、内表面积和总高度计算
- [精编]《工伤保险》之铁路企业职工工伤保险试行办法
评论
0/150
提交评论