陕西省铜川市名校2022年九年级数学第一学期期末检测模拟试题含解析_第1页
陕西省铜川市名校2022年九年级数学第一学期期末检测模拟试题含解析_第2页
陕西省铜川市名校2022年九年级数学第一学期期末检测模拟试题含解析_第3页
陕西省铜川市名校2022年九年级数学第一学期期末检测模拟试题含解析_第4页
陕西省铜川市名校2022年九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于函数,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小2.方程x2﹣9=0的解是()A.3 B.±3 C.4.5 D.±4.53.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次4.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是()A.平均数 B.方差 C.中位数 D.众数5.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A. B. C. D.6.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,7.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=DB,若S△ADE=3,则S四边形DBCE=()A.12 B.15 C.24 D.278.一元二次方程3x2﹣x=0的解是()A.x= B.x1=0,x2=3 C.x1=0,x2= D.x=09.某制药厂,为了惠顾于民,对一种药品由原来的每盒121元,经连续两次下调价格后,每盒降为81元;问平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题可列的方程为()A.x= B.x=C. D.10.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A(0,3),B(4,0),⊙P与三角形各边相切的切点分别为D、E、F.将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____.12.2sin30°+tan60°×tan30°=_____.13.反比例函数和在第一象限的图象如图所示,点A在函数图像上,点B在函数图像上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为_____.14.抛物线y=(x-2)2+3的顶点坐标是______.15.如图,点M是反比例函数()图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为______.16.已知⊙O的直径为10cm,线段OP=5cm,则点P与⊙O的位置关系是__.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.18.抛物线的对称轴为直线______.三、解答题(共66分)19.(10分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?20.(6分)如图,在中,,以为直径作交于点.过点作,垂足为,且交的延长线于点.(1)求证:是的切线;(2)若,,求的长.21.(6分)为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中______,______;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.22.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.23.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)24.(8分)如图,⊙O与△ABC的AC边相切于点C,与BC边交于点E,⊙O过AB上一点D,且DE∥AO,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.25.(10分)如图,在中,,,.动点从点出发,沿线段向终点以/的速度运动,同时动点从点出发,沿折线以/的速度向终点运动,当有一点到达终点时,另一点也停止运动,以、为邻边作设▱与重叠部分图形的面积为点运动的时间为.(1)当点在边上时,求的长(用含的代数式表示);(2)当点落在线段上时,求的值;(3)求与之间的函数关系式,并写出自变量的取值范围.26.(10分)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y随x增大而减小,它的图像即是轴对称图形又是中心对称图形.故选C点睛:反比例函数的图像与性质:1、当k>0时,图像在一、三象限,在每个象限内,y随x增大而减小;2、当k<0时,图像在二、四象限,在每个象限内,y随x增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形.2、B【解析】根据直接开方法即可求出答案.【详解】解:∵x2﹣9=0,∴x=±3,故选:B.【点睛】本题考察了直接开方法解方程,注意开方时有两个根,别丢根3、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.4、C【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为46,与被涂污数字无关.故选:C.【点睛】本题考查了方差:它也描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.掌握以上知识是解题的关键.5、D【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可.【详解】解:两次摸球的所有的可能性树状图如下:第一次第二次开始∴两次都是红球.故选D.【点睛】考查用树状图或列表法,求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.6、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.7、C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9,∵S△ADE=3,∴S△ABC=3×9=27,则S四边形DBCE=S△ABC﹣S△ADE=27﹣3=24.故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.8、C【解析】根据题意对方程提取公因式x,得到x(

3x-1)=0的形式,则这两个相乘的数至少有一个为0,由此可以解出x的值.【详解】∵3x2﹣x=0,∴x(3x﹣1)=0,∴x=0或3x﹣1=0,∴x1=0,x2=,故选C.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.9、D【分析】设平均每次下调的百分率为x,根据该药品的原价及经过两次下调后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:设平均每次下调的百分率为x,依题意,得:121(1﹣x)2=1.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、B【分析】根据勾股定理计算出BC长,再根据余弦定义可得答案.【详解】如图所示:∵AC=4,AB=5,∴BC===3,∴cosB==.故选:B.【点睛】考查了锐角三角函数,解题关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.二、填空题(每小题3分,共24分)11、(8075,1)【分析】旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3,根据已知A(0,3),B(4,0),可求得AB长度和三角形内切圆的半径,依次求出OE1,OE2,OE3,OE4,OE5,OE6的长,找到规律,求得OE2018的长,即可求得直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标.【详解】如图所示,旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3设三角形内切圆的半径为r∵△AOB是直角三角形,A(0,3),B(4,0)∴∵⊙P是△AOB的内切圆∴即∴r=1∴BE=BF=OB-OE=4-1=3∵△BO1A1是△AOB绕其B点按顺时针方向旋转得到∴BE1=BF=3∴OE1=4+3∵A1E2=3-1=2∴OE2=4+5+2∴OE3=4+5+3+1同理可推得OE4=4+5+3+4+3,OE5=4+5+3+4+5+2,OE6=4+5+3+4+5+3+12018÷3=6722OE2018=672×(4+5+3)+(4+5+2)=8075三角形在翻折后内切圆的纵坐标不变∴P2018(8075,1)故答案为:(8075,1)【点睛】本题是坐标的规律题,考查了图形翻折的性质,翻转后图形对应的边和角不变,本题应用了三角形内切圆的性质,及三角形内切圆半径的求法,用勾股定理解直角三角形等知识.12、2【分析】特殊值:sin30°=,tan60°=,tan30°=,本题是特殊角,将特殊角的三角函数值代入求解.【详解】解:2sin30°+tan60°×tan30°=2×+×=1+1=2【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.13、1【分析】设A(m,),B(m,),则AB=-,△ABC的高为m,根据三角形面积公式计算即可得答案.【详解】∵A、B分别为、图象上的点,AB∥y轴,∴设A(m,),B(m,),∴S△ABC=(-)m=1.故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征,熟知反比例函数图象上点的坐标都满足反比例函数的解析式是解题关键.14、(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【详解】解:y=(x-2)2+3是抛物线的顶点式,

根据顶点式的坐标特点可知,顶点坐标为(2,3).

故答案为(2,3)【点睛】考查将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.15、1【解析】解:设A的坐标是(m,n),则mn=2,则AB=m,△ABC的AB边上的高等于n,则△ABC的面积=mn=1.故答案为1.点睛:本题主要考查了反比例函数的系数k的几何意义,△ABC的面积=|k|,本知识点是中考的重要考点,同学们应高度关注.16、点P在⊙O上【分析】知道圆O的直径为10cm,OP的长,得到OP的长与半径的关系,求出点P与圆的位置关系.【详解】因为圆O的直径为10cm,所以圆O的半径为5cm,又知OP=5cm,所以OP等于圆的半径,所以点P在⊙O上.故答案为点P在⊙O上.【点睛】本题考查了点与圆的位置关系,根据OP的长和圆O的直径,可知OP的长与圆的半径相等,可以确定点P的位置.17、【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】解:如图,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【点睛】本题考查了扇形的面积公式:S=,也考查了勾股定理以及旋转的性质.18、【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的对称轴.【详解】∵抛物线y=x2+8x+2=(x+1)2﹣11,∴该抛物线的对称轴是直线x=﹣1.故答案为:x=﹣1.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共66分)19、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块【分析】(1)根据每块瓷砖的面积S=楼体外表的总面积÷所需的瓷砖块数n块,求出即可;(2)设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x块,再用n=625000求出即可.【详解】解;(1)∵每块瓷砖的面积楼体外表的总面积÷所需的瓷砖块数块,由此可得出与的函数关系式是:(2)当时,设用灰瓷砖块,则白瓷砖、蓝瓷砖分别为块、块,依据题意得出:,解得:,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块.【点睛】此题主要考查了反比例函数的应用,根据已知得出瓷砖总块数进而得出等式方程是解题关键.20、(1)见解析;(2)BD长为1.【分析】(1)连接OD,AD,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;

(2)根据等腰三角形三线合一的性质证得∠BAD=∠BAC=30°,由30°的直角三角形的性质即可求得BD.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△BAC的中位线,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,∴BD=AB=×10=1,即BD长为1.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、等腰三角形的性质,圆的切线的判定,30°的直角三角形的性质,掌握本题的辅助线的作法是解题的关键.21、(1)56,15;(2)555;(3)【分析】(1)根据C基地的调查人数和所在的百分比即可求出调查总人数,再乘调查A基地人数所占的百分比即可求出m,用调查D基地的人数除以调查总人数即可求出n;(2)先求出调查B基地人数所占的百分比,再乘1500即可;(3)根据题意,列出表格,然后利用概率公式求概率即可.【详解】(1)调查总人数为:40÷20%=200(人)则m=200×28%=56(人)n%=30÷200×100%=15%∴n=15.故答案为:56;15(2)(人)答:选择基地的学生人数为555人.(3)根据题意列表如下:男1男2男3男4女1女2男1(男1,男2)(男1,男3)(男1,男4)(男1,女1)(男1,女2)男2(男2,男1)(男2,男3)(男2,男4)(男2,女1)(男2,女2)男3(男3,男1)(男3,男2)(男3,男4)(男3,女1)(男3,女2)男4(男4,男1)(男4,男2)(男4,男3)(男4,女1)(男4,女2)女1(女1,男1)(女1,男2)(女1,男3)(女1,男4)(女1,女2)女2(女2,男1)(女2,男2)(女2,男3)(女2,男4)(女2,女1)由上表可知,共有30种等可能的结果,其中“1男1女”的结果有16种.所以:(1男1女).【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,掌握结合条形统计图和扇形统计图得出有用信息和利用列表法求概率是解决此题的关键.22、(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理23、通信塔CD的高度约为15.9cm.【解析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE是矩形,设CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度约为15.9cm.【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.24、(1)见解析;(2)AC=1【分析】(1)要证AB切线,连接半径OD,证∠ADO=90°即可,由∠ACB=90°,由OD=OE,DE∥OA,可得∠AOD=∠AOC,证△AOD≌△AOC(SAS)即可,(2)AB是⊙O的切线,∠BDO=90°,由勾股定理求BE,BC=BE+EC可求,利用AD,AC是⊙O的切线长,设AD=AC=x,在Rt△ABC中,AB2=AC2+BC2构造方程求AC即可.【详解】(1)证明:连接OD,∵OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中,∴△AOD≌△AOC(SAS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论