版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一元二次方程的根的情况是A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断2.下列运算正确的是()A. B.C. D.3.如图,在中,,AB=5,BC=4,点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出两个,则AD的取值范围是()A. B.C. D.4.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a< B.≤a<C.a≤或a> D.a≤﹣1或a≥5.一次函数y=﹣3x+b图象上有两点A(x1,y1),B(x2,y2),若x1<x2,则y1,y2的大小关系是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1,y2的大小6.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.7.如图,在中,分别为边上的中点,则与的面积之比是()A. B. C. D.8.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1 B.2 C.3 D.49.方程(x+1)2=4的解是()A.x1=﹣3,x2=3 B.x1=﹣3,x2=1 C.x1=﹣1,x2=1 D.x1=1,x2=310.如图,点、、是上的点,,连结交于点,若,则的度数为()A. B. C. D.11.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.512.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点,分别落在点,处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,依次进行下去,……,若点,,则点B2016的坐标为______.14.若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.15.如图,线段AB=2,分别以A、B为圆心,以AB的长为半径作弧,两弧交于C、D两点,则阴影部分的面积为.16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有.(填序号)17.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.18.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.20.(8分)如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.21.(8分)如图所示是某路灯灯架示意图,其中点A表示电灯,AB和BC为灯架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于点C,求电灯A与地面l的距离.(结果精确到0.1m.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)22.(10分)已知:如图,B,C,D三点在上,,PA是钝角△ABC的高线,PA的延长线与线段CD交于点E.(1)请在图中找出一个与∠CAP相等的角,这个角是;(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.23.(10分)如图,矩形的两边的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,求反比例函数的表达式.24.(10分)如图,某中学有一块长为米,宽为米的矩形场地,计划在该场地上修筑宽都为2米的两条互相垂直的道路(阴影部分),余下的四块矩形小场地建成草坪.(1)请分别写出每条道路的面积(用含或的代数式表示);(2)若,并且四块草坪的面积之和为144平方米,试求原来矩形场地的长与宽各为多少米?25.(12分)问题探究:(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形则蚂蚁爬行的最短路程即为线段的长)(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程.(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.26.LED显示屏(LEDdisplay)是一种平板显示器,可以显示计算机生成的动态图文画面.如图1是屏幕显示的一个正三角形网格的示意图,其中每个小正三角形的边长均为l.位于中点处的输入光点按图2的程序移动.(1)请在图1中画出光点经过的路径:(2)求光点经过的路径总长.
参考答案一、选择题(每题4分,共48分)1、A【分析】把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.【详解】方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.2、D【分析】根据题意利用合并同类项法则、完全平方公式、同底数幂的乘法运算法则及幂的乘方运算法则,分别化简求出答案.【详解】解:A.合并同类项,系数相加字母和指数不变,,此选项不正确;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此选项错误;C.,同底数幂乘法底数不变指数相加,a2·a3=a5,此选项不正确;D.,幂的乘方底数不变指数相乘,(-a)4=(-1)4.a4=a4,此选项正确.故选:D【点睛】本题考查了有理式的运算法则,合并同类项的关键正确判断同类项,然后按照合并同类项的法则进行合并;遇到幂的乘方时,需要注意若括号内有“-”时,其结果的符号取决于指数的奇偶性.3、B【分析】因为在中只能作出一个正方形,所以要作两个菱形则AD必须小于此时的AD,也即这是AD的最大临界值;当AD等于菱形边长时,这时恰好可以作两个菱形,这是AD最小临界值.然后分别在这2种情形下,利用相似三角形的性质求出AD即可.【详解】过C作交DG于M由三角形的面积公式得即,解得①当菱形DEFG为正方形时,则只能作出一个菱形设:,为菱形,,,即,得()若要作两个菱形,则;②当时,则恰好作出两个菱形设:,过D作于H,由①知,,,得综上,故选:B.【点睛】本题考查了相似三角形的性质、锐角三角函数,依据图形的特点判断出两个临界值是解题关键.4、A【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】∵抛物线的解析式为y=ax1-x+1.观察图象可知当a<0时,x=-1时,y≤1时,满足条件,即a+3≤1,即a≤-1;当a>0时,x=1时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax1-1x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选A.【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.5、A【分析】根据一次函数图象的增减性判断即可.【详解】∵k=﹣3<0,∴y值随x值的增大而减小,又∵x1<x1,∴y1>y1.故选:A.【点睛】本题考查一次函数图象的增减性,关键在于先判断k值再根据图象的增减性判断.6、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【详解】如图,当在对角线CA上时,C最小,连接CP,
由旋转得:BP=B,∠PB=90°,
∴∠PBC+∠CB=90°,
∵四边形ABCD为正方形,
∴BC=BA,∠ABC=90°,
∴∠AB+∠CB=90°,
∴∠PBC=∠AB,在△PBC和△BA中,,
∴△PBC≌△BA,
∴A=PC=1,
在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【点睛】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.7、A【分析】根据相似三角形的性质即可求出答案.【详解】由题意可知:是的中位线,,,,故选:A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8、C【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】有三个①∠ABC=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选C【点睛】本题考查相似三角形的判定定理,熟练掌握判定定理是解题的关键9、B【解析】利用直接开平方的方法解一元二次方程得出答案.【详解】(x+1)2=4则x+1=±2,解得:x1=−1-2=-3,x2=−1+2=1.故选B.【点睛】此题主要考查了直接开平方法解方程,正确开平方是解题关键.10、B【分析】根据平行可得,∠A=∠O,据圆周角定理可得,∠C=∠O,结合外角的性质得出∠ADB=∠C+∠A=60°,可求出结果.【详解】解:∵OB∥AC,∠A=∠O,又∠C=∠O,∴∠ADB=∠C+∠A=∠O+∠O=60°,∴∠O=40°.故选:B.【点睛】本题主要考查圆周角定理、平行线的性质以及外角的性质,熟练掌握同弧所对的圆周角等于圆心角的一半是解题的关键.11、D【详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.12、C【解析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【点睛】此题考查轴对称图形和中心对称图形,难度不大二、填空题(每题4分,共24分)13、(6048,2)【分析】由题意可得,在直角三角形中,,,根据勾股定理可得,即可求得的周长为10,由此可得的横坐标为10,的横坐标为20,···由此即可求得点的坐标.【详解】在直角三角形中,,,由勾股定理可得:,的周长为:,∴的横坐标为:OA+AB1+B1C1=10,的横坐标为20,···∴.故答案为.【点睛】本题考查了点的坐标的变化规律,根据题意正确得出点的变化规律是解决问题的关键.14、30º【分析】根据正多边形的中心角的定义,可得正十二边形的中心角是:360°÷12=30°.【详解】正十二边形的中心角是:360°÷12=30°.故答案为:30º.【点睛】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.15、【分析】利用扇形的面积公式等边三角形的性质解决问题即可.【详解】解:由题意可得,AD=BD=AB=AC=BC,∴△ABD和△ABC时等边三角形,∴阴影部分的面积为:故答案为﹣4.【点睛】考核知识点:扇形面积.熟记扇形面积是关键.16、①③④【解析】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.考点:翻折变换的性质、菱形的判定与性质、勾股定理17、1【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【详解】解:由题意可得,红球的概率为60%.则白球的概率为10%,这个口袋中白球的个数:10×10%=1(个),故答案为1.【点睛】本题考查了概率的问题,掌握概率公式、以频率计算频数是解题的关键.18、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.三、解答题(共78分)19、(1);(2)PG=;(3)存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或.【解析】试题分析:(1)将A(1,1),B(1,4)代入,运用待定系数法即可求出抛物线的解析式.(2)由E(m,1),B(1,4),得出P(m,),G(m,4),则由可用含m的代数式表示PG的长度.(3)先由抛物线的解析式求出D(﹣3,1),则当点P在直线BC上方时,﹣3<m<1.分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.试题解析:解:(1)∵抛物线与x轴交于点A(1,1),与y轴交于点B(1,4),∴,解得.∴抛物线的解析式为.(2)∵E(m,1),B(1,4),PE⊥x轴交抛物线于点P,交BC于点G,∴P(m,),G(m,4).∴PG=.(3)在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.∵,∴当y=1时,,解得x=1或﹣3.∴D(﹣3,1).当点P在直线BC上方时,﹣3<m<1.设直线BD的解析式为y=kx+4,将D(﹣3,1)代入,得﹣3k+4=1,解得k=.∴直线BD的解析式为y=x+4.∴H(m,m+4).分两种情况:①如果△BGP∽△DEH,那么,即.由﹣3<m<1,解得m=﹣1.②如果△PGB∽△DEH,那么,即.由﹣3<m<1,解得m=.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或.考点:1.二次函数综合题;2.单动点问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.由实际问题列代数式;6.相似三角形的判定和性质;7.分类思想的应用.20、(1)B(0,2),;(2)①点M的坐标为(,0)或M(,0);②m=-1或m=或m=.【分析】(1)把点代入求得c值,即可得点B的坐标;抛物线经过点,即可求得b值,从而求得抛物线的解析式;(2)由轴,M(m,0),可得N(),①分∠NBP=90°和∠BNP=90°两种情况求点M的坐标;②分N为PM的中点、P为NM的中点、M为PN的中点3种情况求m的值.【详解】(1)直线与轴交于点,∴,解得c=2∴B(0,2),∵抛物线经过点,∴,∴b=∴抛物线的解析式为;(2)∵轴,M(m,0),∴N()①有(1)知直线AB的解析式为,OA=3,OB=2∵在△APM中和△BPN中,∠APM=∠BPN,∠AMP=90°,若使△APM中和△BPN相似,则必须∠NBP=90°或∠BNP=90°,分两种情况讨论如下:(I)当∠NBP=90°时,过点N作NC轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO,∴Rt△NCB∽Rt△BOA∴,即,解得m=0(舍去)或m=∴M(,0);(II)当∠BNP=90°时,BNMN,∴点N的纵坐标为2,∴解得m=0(舍去)或m=∴M(,0);综上,点M的坐标为(,0)或M(,0);②由①可知M(m,0),P(m,),N(m,),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2()=,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有+()=0,解得m=3(舍去)或m=−1;当N为线段PM的中点时,则有=2(),解得m=3(舍去)或m=;综上可知当M,P,N三点成为“共谐点”时m的值为或−1或.考点:二次函数综合题.21、电灯A距离地面l的高度为6.4米.【分析】过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,解直角三角形即可得到结论.【详解】解:过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,∵∠ABC=110°,∴∠ABE=20°,∴∠A=70°,∴sin20°===0.34,解得:AE=0.68,∴AD=AE+DE≈6.4;答:电灯A距离地面l的高度为6.4米.【点睛】考核知识点:解直角三角形应用.构造直角三角形,解直角三角形是关键.22、(1)∠BAP;(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明见解析.【分析】(1)根据等腰三角形∆ABC三线合一解答即可;(2)连接EB,由PA是△CAB的垂直平分线,得到EC=EB.,∠ECP=∠EBP,∠ECA=∠EBA.然后推出∠BAD=∠BED=90°,利用勾股定理可得EB2+ED2=BD2,找到BD2=2AB2,代入可求的EC2+ED2=2AC2的等量关系即可.【详解】(1)∵等腰三角形∆ABC且PA是钝角△ABC的高线∴PA是∠CAB的角平分线∴∠CAP=∠BAP(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明:连接EB,与AD交于点F∵点B,C两点在⊙A上,∴AC=AB,∴∠ACP=∠ABP.∵PA是钝角△ABC的高线,∴PA是△CAB的垂直平分线.∵PA的延长线与线段CD交于点E,∴EC=EB.∴∠ECP=∠EBP.∴∠ECP—∠ACP=∠EBP—∠ABP.即∠ECA=∠EBA.∵AC=AD,∴∠ECA=∠EDA∴∠EBA=∠EDA∵∠AFB=∠EFD,∠BCD=45°,∴∠AFB+∠EBA=∠EFD+∠EDA=90°即∠BAD=∠BED=90°∴EB2+ED2=BD2.∵BD2=AB2+AD2,∴BD2=2AB2,∴EB2+ED2=2AB2,∴EC2+ED2=2AC2【点睛】本题考查了圆的性质、等腰三角形的性质以及勾股定理,这是一个综合题,注意数形结合.23、(1)m=-12;(2)【分析】(1)根据矩形的性质求出点E的坐标,根据待定系数法即可得到答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得BF的长,可得点F的坐标,根据待定系数法,可得m的值,可得答案.【详解】(1)∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=8,∠D=∠DCB=90°,∵点B坐标为(-6,0),E为CD中点,∴E(-3,4),∵函数图象过E点,∴m=-34=-12;(2)∵∠D=90°,AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xxx尖凿项目可行性研究报告(立项说明)
- 年产xxx快硬硅酸盐水泥项目可行性研究报告(创业计划)
- 新建人体感应壁灯项目立项申请报告
- 脱发与养发日常护理
- 小班健康教案《网小鱼》
- 大班体育游戏教案及教学反思《调皮的小皮球》
- 小班科学公开课教案及教学反思《苹果种子的故事》
- 大班语言教案:假如没有水
- 6的乘法口诀(教案)二年级上册数学人教版
- 第三单元《物态变化》1.温度和温度计(双基过关)(原卷版)
- 北京市海淀区2023-2024学年高二上学期期末考试 英语 含答案
- 《公共科目》军队文职考试试题及解答参考(2024年)
- 2024年秋季新人教版七年级上册英语全册教案设计
- 2024年事业单位招聘考试公共基础知识题库及答案
- 法律服务投标方案(技术方案)
- 2024年人教版七年级上册历史第三单元综合检测试卷及答案
- 高级政工师职称面试题
- 颈动脉斑块科普知识PPT参考幻灯片
- 贵州烟草公司黔南公司低压配电系统安全性评估报告(最终稿)
- 封头容积、质量、内表面积和总高度计算
- [精编]《工伤保险》之铁路企业职工工伤保险试行办法
评论
0/150
提交评论