2025届四川中江县春季联考九上数学期末考试模拟试题含解析_第1页
2025届四川中江县春季联考九上数学期末考试模拟试题含解析_第2页
2025届四川中江县春季联考九上数学期末考试模拟试题含解析_第3页
2025届四川中江县春季联考九上数学期末考试模拟试题含解析_第4页
2025届四川中江县春季联考九上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川中江县春季联考九上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.2.如图,已知四边形ABCD内接于⊙O,AB是⊙O的直径,EC与⊙O相切于点C,∠ECB=35°,则∠D的度数是()A.145° B.125° C.90° D.80°3.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A.0 B.1 C.2 D.34.如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为()A.15 B.10 C.7.5 D.55.下列成语所描述的事件是必然事件的是()A.水涨船高 B.水中捞月 C.一箭双雕 D.拔苗助长6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程()A. B.C. D.9.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为()A.1:5 B.4:5 C.2:10 D.2:510.把抛物线向右平移个单位,再向下平移个单位,即得到抛物线()A.y=-(x+2)2+3 B.y=-(x-2)2+3 C.y=-(x+2)2-3 D.y=-(x-2)2-311.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数12.方程x2+4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根二、填空题(每题4分,共24分)13.二次函数的图像经过原点,则a的值是______.14.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.15.如图,在平行四边形中,是线段上的点,如果,,连接与对角线交于点,则_______.16.如图,⊙O的半径为4,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作▱ABCD,对角线AC、BD交于E,则OE的最大值为_____.17.将二次函数化成的形式为__________.18.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′的度数是______________.三、解答题(共78分)19.(8分)如图,在□ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.20.(8分)如图,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.(1)画出位似中心O;(2)△ABC与△A′B′C′的相似比为__________,面积比为__________.21.(8分)如图,以等腰△ABC的一腰AC为直径作⊙O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F.(1)求证:EF是⊙O的切线;(2)证明:∠CAD=∠CDF;(3)若∠F=30°,AD=,求⊙O的面积.22.(10分)如图,抛物线过点,交x轴于A,B两点点A在点B的左侧.求抛物线的解析式,并写出顶点M的坐标;连接OC,CM,求的值;若点P在抛物线的对称轴上,连接BP,CP,BM,当时,求点P的坐标.23.(10分)如图,在O中,,CD⊥OA于点D,CE⊥OB于点E.(1)求证:;(2)若∠AOB=120°,OA=2,求四边形DOEC的面积.24.(10分)如图1,抛物线与轴交于点和点,与轴交于点,且满足,若对称轴在轴的右侧.(1)求抛物线的解析式.(2)如图,若点为线段上的一动点(不与重合),分别以、为斜边,在直线的同侧作等腰直角三角形和,试确定面积最大时点的坐标.(3)若,是抛物线上的两点,当,时,均有,求的取值范围.25.(12分)如图,在Rt△ABC中,∠ACB=90°.(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.26.如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.2、B【解析】试题解析:连接∵EC与相切,故选B.点睛:圆内接四边形的对角互补.3、A【解析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k-1<0,k<1.故选A.考点:反比例函数的性质.4、D【分析】首先证明△BAD∽△BCA,由相似三角形的性质可得:△BAD的面积:△BCA的面积为1:4,得出△BAD的面积:△ACD的面积=1:3,即可求出△ABD的面积.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴,∴,∵△ACD的面积为15,∴△ABD的面积=×15=5,故选:D.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.5、A【解析】必然事件就是一定会发生的事件,依据定义即可解决【详解】A.水涨船高是必然事件,故正确;B.水中捞月,是不可能事件,故错误;C.一箭双雕是随机事件,故错误D.拔苗助长是不可能事件,故错误故选:A【点睛】此题考查随机事件,难度不大6、D【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故答案选D.考点:事件概率的估计值.7、B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,

∴-2+m=−,

解得,m=-1,

故选B.8、B【分析】根据题意,门框的长、宽以及竹竿长是直角三角形的三边长,等量关系为:门框长的平方+门框宽的平方=门的对角线长的平方,把相关数值代入即可求解.【详解】解:∵竹竿的长为x尺,横着比门框宽4尺,竖着比门框高2尺.

∴门框的长为(x-2)尺,宽为(x-4)尺,

∴可列方程为(x-4)2+(x-2)2=x2,

故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,得到门框的长,宽,竹竿长是直角三角形的三边长是解决问题的关键.9、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径,则问题可求.【详解】解:∵62+82=102,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r,∴由面积法×6×8=×(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5,故选D.【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.10、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线向右平移个单位,得:,再向下平移个单位,得:.故选:.【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.11、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.12、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【详解】解:∵△=b2﹣4ac=16﹣16=0∴方程有两个相等的实数根.故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(每题4分,共24分)13、1【分析】根据题意将(0,0)代入二次函数,即可得出a的值.【详解】解:∵二次函数的图象经过原点,∴=0,∴a=±1,∵a+1≠0,∴a≠-1,∴a的值为1.故答案为:1.【点睛】本题考查二次函数图象上点的特征,图象过原点,可得出x=0,y=0,从而分析求值.14、5cm【分析】先求出BF、CF的长,利用勾股定理列出关于EF的方程,即可解决问题.【详解】∵四边形ABCD为矩形,∴∠B=∠C=90°;由题意得:AF=AD=BC=10,ED=EF,设EF=x,则EC=8−x;由勾股定理得:BF2=AF2−AB2=36,∴BF=6,CF=10−6=4;由勾股定理得:x2=42+(8−x)2,解得:x=5,故答案为:5cm.【点睛】该题主要考查了翻折变换及其应用问题;解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答.15、【分析】由平行四边形的性质得AB∥DC,AB=DC;平行直线证明△BEF∽△DCF,其性质线段的和差求得,三角形的面积公式求出两个三角形的面积比为2:1.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴△BEF∽△DCF,∴,又∵BE=AB−AE,AB=1,AE=3,∴BE=2,DC=1,∴,又∵S△BEF=•EF•BH,S△DCF=•FC•BH,∴,故答案为2:1.【点睛】本题综合考查了平行四边形的性质,相似三角形的判定与性质,三角形的面积公式等相关知识点,重点掌握相似三角形的判定与性质.16、2+2【分析】如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF的中点J,连接EJ.证明EJ是定值,可得点E的运动轨迹是以J为圆心,EJ为半径的圆,由此即可解决问题.【详解】如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF的中点J,连接EJ.∵∠BAC=∠OAF=120°,∴∠BAO=∠CAF,∵ABAC,AO=AF,∴△OAB≌△FAC(SAS),∴CF=OB=,∵四边形BCDA是平行四边形,∴AE=EC,∵AJ=JF,∴EJ=CF=,∴点E的运动轨迹是以J为圆心,EJ为半径的圆,易知OJ=当点E在OJ的延长线上时,OE的值最大,最大值为OJ+JE=,故答案为2+2.【点睛】本题考查的是圆的综合,难度较大,解题关键是找出EJ是最大值.17、【分析】利用配方法整理即可得解.【详解】解:,所以.故答案为.【点睛】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);(2)顶点式:;(3)交点式(与轴):.18、105°【分析】根据旋转的性质得AB′=AB,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AB′B=∠ABB′,然后根据平行线的性质得到∠AB′B=∠C′AB′=75°,于是得到结论.【详解】解:∵△ABC绕点A逆时针旋转到△AB′C′,

∴AB′=AB,∠B′AB=∠C′AC,∠C′AB′=∠CAB=75°,

∴△AB′B是等腰三角形,∴∠AB′B=∠ABB′

∵BB'∥AC,

∴∠AB′B=∠C′AB′=75°,

∴∠C′AC=∠B′AB=180°-2×75°=30°,

∴∠BAC′=∠C′AC+∠BAC=30°+75°=105°,故答案为:105°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.三、解答题(共78分)19、(1)证明见解析;(2)⊙O的半径为【分析】(1)连接OB,根据题意求证OB⊥AD,利用垂径定理求证;(2)根据垂径定理和勾股定理求解.【详解】解:(1)连接OB,交AD于点E.∵BC是⊙O的切线,切点为B,∴OB⊥BC.∴∠OBC=90°∵四边形ABCD是平行四边形∴AD//BC∴∠OED=∠OBC=90°∴OE⊥AD又∵OE过圆心O∴(2)∵OE⊥AD,OE过圆心O∴AE=AD=4在Rt△ABE中,∠AEB=90°,BE==3,设⊙O的半径为r,则OE=r-3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r-3)2+42=r2∴r=∴⊙O的半径为【点睛】掌握垂径定理和勾股定理是本题的解题关键.20、(1)作图见解析;(2)2∶1;4∶1.【详解】(1)根据位似的性质,延长AA′、BB′、CC′,则它们的交点即为位似中心O;(2)根据位似的性质得到AB:A′B′=OA:OA′=2:1,则△ABC与△A′B′C′的相似比为2:1,然后根据相似三角形的性质得到它们面积的比.解:(1)如图,点O为位似中心;(2)因为AB:A′B′=OA:OA′=12:6=2:1,所以△ABC与△A′B′C′的相似比为2:1,面积比为4:1.故答案为2:1;4:1.点睛:本题主要考查位似知识.利用位似的性质找出位似中心是解题的关键.21、(1)见解析;(2)见解析;(3)π【分析】(1)连接OD,AD,证点D是BC的中点,由三角形中位线定理证OD∥AB,可推出∠ODF=90°,即可得到结论;(2)由OD=OC得到∠ODC=∠OCD,由∠CAD+∠OCD=90°和∠CDF+∠ODC=90°即可推出∠CAD=∠CDF;(3)由∠F=30°得到∠DOC=60°,推出∠DAC=30°,在Rt△ADC中,由锐角三角函数可求出AC的长,推出⊙O的半径,即可求出⊙O的面积.【详解】解:(1)证明:如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,即AD⊥BC,又AB=AC,∴BD=CD,又AO=CO,∴OD∥AB,又FE⊥AB,∴FE⊥OD,∴EF是⊙O的切线;(2)∵OD=OC,∴∠ODC=∠OCD,∵∠ADC=∠ODF=90°,∴∠CAD+∠OCD=90°,∠CDF+∠ODC=90°,∴∠CAD=∠CDF;(3)在Rt△ODF中,∠F=30°,∴∠DOC=90°﹣30°=60°,∵OA=OD,∴∠OAD=∠ODA=∠DOC=30°,在Rt△ADC中,AC===2,∴r=1,∴S⊙O=π•12=π,∴⊙O的面积为π.【点睛】本题考查了圆的有关性质,切线的判定与性质,解直角三角形等,解题关键是能够根据题意作出适当的辅助线,并熟练掌握解直角三角形的方法.22、抛物线的解析式为,顶点M的坐标为;;P点坐标为或【解析】根据待定系数法,可得函数解析式;根据顶点式解析式,可得顶点坐标;根据勾股定理及逆定理,可得,根据正切函数,可得答案;根据相似三角形的判定与性质,可得PM的值,可得M点坐标.【详解】由抛物线过点,得,解得,抛物线的解析式为,顶点M的坐标为;如图1,连接OM,,,,,,,,;如图2,过C作对称轴,垂足N在对称轴上,取一点E,使,连接CE,.当时,,解得的,,,.,,,,∽,,易知,,,解得,P点坐标为或【点睛】本题考查了二次函数综合题,利用待定系数法求函数解析式,勾股定理,相似三角形的判定和性质,锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线面构造相似三角形解决问题,属于中考压轴题.23、(1)详见解析;(2)【分析】(1)连接OC,由AC=BC,可得∠AOC=∠BOC,又CD⊥OA,CE⊥OB,由角平分线定理可得CD=CE;(2)由∠AOB=120°,∠AOC=∠BOC,可得∠AOC=60°,又∠CDO=90°,得∠OCD=30°,可得,由勾股定理可得,可得;同理可得,进而求出.【详解】(1)证明:连接OC.∵AC=BC,∴∠AOC=∠BOC.∵CD⊥OA,CE⊥OB,∴CD=CE.(2)解:∵∠AOB=120°,∠AOC=∠BOC,∴∠AOC=60°.∵∠CDO=90°,∴∠OCD=30°,∵OC=OA=2,∴.∴,∴,同理可得,∴.【点睛】本题主要考查了圆心角与弧的关系,角平分线的性质,勾股定理以及面积计算,熟练掌握圆中的相关定理是解题的关键.24、(1);(2);(3)【分析】(1)由二次函数与一元二次方程的关系,根据根与系数的关系得x₁+x₂=-2m,x₁·x₂=8m再联立,求解得m值,即可得出函数解析式;(2)欲求△MNP的面积,确定△APM、△BNP是等腰直角三角形,即可求解;(3)由(1)可知,函数的对称轴为:x=1,与关于对称轴对称,故其函数值相等,即可求解.【详解】解:(1)与轴交于和点,是方程的两个根,即解得,对称轴轴在轴的右侧(2)如图,和为等腰直角三角形..为直角三角形令,解得:,,,设,则,当,即时,最大,此时,所以(3)由函数可知,对称轴为,则与关于对称轴对称,故其函数值相等,都为又,时,均有,结合函数图象可得:解得:.【点睛】本题考查了二次函数的性质,并利用其性质来解决最大值的问题,利用一元二次方程和二次函数的关系确定函数关系式是基础,根据对称性确定a的取值范围是难点.25、(1)如图所示,见解析;(1)BD的长为1.【分析】(1)根据题意可知要作∠A的平分线,按尺规作图的要求作角平分线即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论