江苏省高邮市2025届九年级数学第一学期期末调研试题含解析_第1页
江苏省高邮市2025届九年级数学第一学期期末调研试题含解析_第2页
江苏省高邮市2025届九年级数学第一学期期末调研试题含解析_第3页
江苏省高邮市2025届九年级数学第一学期期末调研试题含解析_第4页
江苏省高邮市2025届九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省高邮市2025届九年级数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-12.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.53.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为()A. B. C.2 D.44.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是()A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想5.模型结论:如图①,正内接于,点是劣弧上一点,可推出结论.应用迁移:如图②,在中,,,,是内一点,则点到三个顶点的距离和的最小值为()A. B.5 C. D.6.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.7.如图所示的几何体的左视图是()A. B.C. D.8.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.9.如图,在平面直角坐标系中,若干个半径为2个单位长度,圆心角为的扇形组成一条连续的曲线,点从原点出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则2019秒时,点的坐标是()A. B. C. D.10.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.12.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,1.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是_________.13.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.14.如图,四边形内接于,若,_______.15.经过点(1,﹣4)的反比例函数的解析式是_____.16.若方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,则a的值是_____.17.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.18.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.三、解答题(共66分)19.(10分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.20.(6分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.判断线段DE、FG的位置关系,并说明理由.21.(6分)解方程:(1);(2)22.(8分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.23.(8分)如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED.24.(8分)如图,在边长为1的正方形组成的网格中,的顶点均在格点上,点,的坐标分别是,,绕点逆时针旋转后得到.(1)画出,直接写出点,的坐标;(2)求在旋转过程中,点经过的路径的长;(3)求在旋转过程中,线段所扫过的面积.25.(10分)已知抛物线与轴交于两点,与轴交于点.(1)求此抛物线的表达式及顶点的坐标;(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.①试用含的代数式表示的长;②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.26.(10分)如图,在等边△ABC中,把△ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与B、C重合),设∠AMN=α.(1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;(2)若α=45°,求BD:DC的值;(3)求证:AM•CN=AN•BD.

参考答案一、选择题(每小题3分,共30分)1、D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】2x>m−3,解得x>,∵在数轴上的不等式的解集为:x>−2,∴=−2,解得m=−1;故选:D.【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.2、B【分析】根据二次函数y=ax2+bx+c的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标是(﹣1,0),∴x=﹣2时,y<0,∴4a﹣2b+c<0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故选B.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.3、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性质即可得出△AOE与△BOF的面积之比.【详解】:∵AD∥BC,

∴∠OAE=∠OFB,∠OEA=∠OBF,

∴,∴所以相似比为,∴.故选:D.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.4、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.5、D【分析】在△DEG右侧作等边三角形DGM,连接FM,由模型可知DF+FG=FM,∴DF+EF+FG的最小值即为线段EM,根据题意求出EM即可.【详解】解:在△DEG右侧作等边三角形DGM,过M作ED的垂线交ED延长线于H,连接FM,EM,由模型可知DF+FG=FM,∴DF+EF+FG的最小值即为EF+FM的最小值,即线段EM,由已知易得∠MDH=30°,DM=DG=,∴在直角△DMH中,MH=DM=,DH=,∴EH=3+3=6,在直角△MHE中,【点睛】本题主要考查了学生的知识迁移能力,熟练掌握等边三角形的性质和勾股定理是解题的关键.6、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.7、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看共一列,第一层是一个小正方形,第二层是一个小正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.8、C【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.9、B【分析】设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律依此规律即可得出结论.【详解】解:作于点A.秒∴1秒时到达点,2秒时到达点,3秒时到达点,……,.,.∴,,,,设第n秒运动到为自然数点,观察,发现规律:,,,,,,,,,,,,故选:B.【点睛】本题考查了解直角三角形,弧长的计算及列代数式表示规律,先通过弧长的计算,算出每秒点P达到的位置,再表示出开始几个点的坐标,从而找出其中的规律.10、D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.二、填空题(每小题3分,共24分)11、【分析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.【详解】圆心角为120°,半径为6cm的扇形的弧长为4cm∴圆锥的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.12、【分析】由题意通过列表求出p、q的所有可能,再由根的判别式就可以求出满足条件的概率.【详解】解:由题意,列表为:∵通过列表可以得出共有6种情况,其中能使关于x的方程有实数根的有3种情况,∴P满足关于x的方程有实数根为.故答案为:.【点睛】本题考查列表法或树状图求概率的运用,根的判别式的运用,解答时运用列表求出所有可能的情况是关键.13、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【点睛】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.14、【分析】根据圆内接四边形的对角互补,即可求得答案.【详解】∵四边形ABCD是⊙O的内接四边形,

∴.

故答案为:.【点睛】主要考查圆内接四边形的性质及圆周角定理.15、﹣【分析】直接利用反比例函数的性质得出解析式.【详解】∵反比例函数经过点(1,﹣4),∴xy=﹣4,∴反比例函数的解析式是:y=﹣.故答案为:y=﹣.【点睛】本题考查的是反比例函数的性质,是近几年中考的热点问题,要熟练掌握.16、-3【分析】根据一元二次方程的定义列方程求出a的值即可.【详解】∵方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,∴-1=2,且a-3≠0,解得:a=-3,故答案为:-3【点睛】本题考查一元二次方程的定义,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程;一般形式为ax2+bx+c=0(a≠0),熟练掌握定义是解题关键,注意a≠0的隐含条件,不要漏解.17、(0,3).【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.18、(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用三、解答题(共66分)19、(1)证明见解析;(2).【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90,根据切线判定推出即可;(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.【详解】(1)是的直径,,,,,,,是的切线;(2)连接,,且,,,,,,,,,的半径为,阴影部分的面积扇形的面积三角形的面积.【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.20、见解析【分析】根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直.【详解】解:DE⊥FG.理由:由题知:Rt△ABC≌Rt△BDE≌Rt△FEG∴∠A=∠BDE=∠GFE∵∠BDE+∠BED=90°∴∠GFE+∠BED=90°,即DE⊥FG.21、(1),;(2),.【分析】(1)运用公式法解方程即可;(2)运用因式分解法解方程即可.【详解】(1)∵,∴,∴,;(2)移项,得:,提公因式得:,∴或,∴,;【点睛】本题主要考查解一元二次方程-公式法和因式分解法,能把一元二次方程转化成一元一次方程是解此题的关键.22、(1);(2)【解析】(1)根据甲盘中的数字,可判断求出概率;(2)列出符合条件的所有可能,然后确定符合条件的可能,求出概率即可.【详解】(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.23、电视塔的高度为12米.【分析】作AH⊥ED交FC于点G,交ED于H;把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例列出方程,解方程即可.【详解】解:过A点作AH⊥ED,交FC于G,交ED于H.由题意可得:△AFG∽△AEH,AG=BC=1米,GH=CD=6米,HD=CG=AB=1.1米,∴AH=AG+GH=7米,FG=FC-CG=1.1米∴=即=,解得:EH=10.1.∴ED=EH+HD=10.1+1.1=12(米).∴电视塔的高度为12米.【点睛】此题考查的是相似三角形的应用,掌握构造相似三角形的方法和相似三角形的判定及性质是解决此题的关键.24、(1)见解析,;(2);(3)【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;

(2)利用勾股定理列式求出OB的长,再利用弧长公式列式计算即可得解;

(3)根据AB扫过的面积等于以OA、OB为半径的两个扇形的面积的差列式计算即可得解.【详解】解:(1)△A1OB1如图所示,

A1(-3,3),B1(-2,1);(2)由勾股定理得,∴弧BB1的长=(3)由勾股定理得,∴∴∴线段AB所扫过的面积为:【点睛】本题考查利用旋转变换作图,弧长计算,扇形的面积,熟练掌握网格结构,准确找出对应点的位置是解题的关键,(3)判断出AB扫过的面积等于两个扇形的面积的差是解题的关键.25、(1),顶点坐标为:;(2)①;②能,理由见解析,点的坐标为;(3)存在,点Q的坐标为:或.【分析】(1)根据待定系数法即可求出抛物线的解析式,然后把一般式转化为顶点式即可得出抛物线的顶点坐标;(2)①先利用待定系数法求出直线的函数表达式,再设出点D、E的坐标,然后分点D在y轴右侧和y轴左侧利用或列式化简即可;②根据题意容易判断:点D在y轴左侧时,不存在这样的点;当点D在y轴右侧时,分或两种情况,设出E、F坐标后,列出方程求解即可;(3)先求得点M、N的坐标,然后连接CM,过点N作NG⊥CM交CM的延长线于点G,即可判断∠MCN=45°,则点C即为符合题意的一个点Q,所以另一种情况的点Q应为过点C、M、N的⊙H与y轴的交点,然后根据圆周角定理的推论、等腰直角三角形的性质和勾股定理即可求出CQ的长,进而可得结果.【详解】解:(1)∵抛物线与轴交于点,∴设抛物线的表达式为:,把点代入并求得:,∴抛物线的表达式为:,即,∴抛物线的顶点坐标为:;(2)①设直线的表达式为:,则,解得:,∴直线的表达式为:,设,则,当时,∴,当时,,综上:,②由题意知:当时,不存在这样的点;当时,或,∵,∴,∴,解得(舍去),∴,或,解得(舍去),(舍去),综上,直线能把分成面积之比为1:2的两部分,且点的坐标为;(3)∵点在抛物线上,∴,∴,连接MC,如图,∵C(0,6),M(1,6)∴MC⊥y轴,过点N作NG⊥CM交CM的延长线于点G,∵N(2,4),∴CG=NG=2,∴△CNG是等腰直角三角形,∴∠MCN=45°,则点C即为符合题意的一个点Q,∴另一种情况的点Q应为过点C、M、N的⊙H与y轴的交点,连接HN,∵,∴MN=,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论