版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()A. B. C. D.2.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣53.某旅游景点8月份共接待游客16万人次,10月份共接待游客36万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.16(1+x2)=36 B.16x+16x(x+1)=36C.16(1+x)+16(1+x)2=36 D.16x(x+1)=364.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为()A.30° B.60° C.30°或150° D.60°或120°5.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润和月份之间的函数关系式为,则该企业一年中应停产的月份是()A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月6.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是()A. B. C.或 D.或7.如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程=kx+b的解为()A.-2,1 B.1,1 C.-2,-2 D.无法确定8.如图,边长为的正方形的对角线与交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕交于点,则()A. B. C. D.9.如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm10.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是()A.1 B.3 C.-1 D.-3二、填空题(每小题3分,共24分)11.二次函数的图象如图所示,则点在第__________象限.12.已知是,则的值等于____________.13.如图,在中,,,,则的长为__________.14.在平面直角坐标系中,点P(﹣2,1)关于原点的对称点P′的坐标是_____________.15.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是▲.16.已知的半径点在内,则_________(填>或=,<)17.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.三、解答题(共66分)19.(10分)已知:二次函数、图像的顶点分别为A、B(其中m、a为实数),点C的坐标为(0,).(1)试判断函数的图像是否经过点C,并说明理由;(2)若m为任意实数时,函数的图像始终经过点C,求a的值;(3)在(2)的条件下,存在不唯一的x值,当x增大时,函数的值减小且函数的值增大.①直接写出m的范围;②点P为x轴上异于原点O的任意一点,过点P作y轴的平行线,与函数、的图像分别相交于点D、E.试说明的值只与点P的位置有关.20.(6分)如图1,抛物线y=﹣x2+bx+c交x轴于点A(-4,0)和点B,交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)如图2,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,当△ADC面积有最大值时,在抛物线对称轴上找一点M,使DM+AM的值最小,求出此时M的坐标;(3)点Q在直线AC上的运动过程中,是否存在点Q,使△BQC为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.21.(6分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?22.(8分)为倡导绿色出行,某市推行“共享单车”公益活动,在某小区分别投放甲、乙两种不同款型的共享单车,甲型、乙型单车投放成本分别为元和元,乙型车的成本单价比甲型车便宜元,但两种类型共享单车的投放量相同,求甲型共享单车的单价是多少元?23.(8分)如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,请在图中画出旋转后的图形△A′B′C,点B′的坐标为________;(2)在(1)的条件下,求出点A经过的路径的长(结果保留π).24.(8分)如图,已知四边形ABCD是平行四边形.(1)尺规作图:按下列要求完成作图;(保留作图痕迹,请标注字母)①连AC;②作AC的垂直平分线交BC、AD于E、F;③连接AE、CF;(2)判断四边形AECF的形状,并说明理由.25.(10分)如图,AB为⊙O的弦,若OA⊥OD,AB、OD相交于点C,且CD=BD.(1)判定BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.26.(10分)如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.(1)求证:;(2)如图2,交于点,若,点共线,其他条件不变,①判断四边形的形状,并说明理由;②当,,且四边形是正方形时,直接写出的长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.【详解】解:已知三角形的面积s一定,
则它底边a上的高h与底边a之间的函数关系为S=ah,即;
该函数是反比例函数,且2s>0,h>0;
故其图象只在第一象限.
故选:D.【点睛】本题考查反比例函数的图象特点:反比例函数的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.2、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.3、A【分析】设游客每月的平均增长率为x,根据该旅游景点8月份及10月份接待游客人次数,即可得出关于x的一元二次方程,此题得解.【详解】解:设游客每月的平均增长率为x,依题意,得:16(1+x)2=1.故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4、C【解析】试题解析:如图,弦AB所对的圆周角为∠C,∠D,连接OA、OB,因为AB=OA=OB=6,所以,∠AOB=60°,根据圆周角定理知,∠C=∠AOB=30°,根据圆内接四边形的性质可知,∠D=180°-∠C=150°,所以,弦AB所对的圆周角的度数30°或150°.故选C.5、C【分析】根据解析式,求出函数值y等于2时对应的月份,依据开口方向以及增减性,再求出y小于2时的月份即可解答.【详解】解:∵
∴当y=2时,n=2或者n=1.
又∵抛物线的图象开口向下,
∴1月时,y<2;2月和1月时,y=2.
∴该企业一年中应停产的月份是1月、2月、1月.
故选:C.【点睛】本题考查二次函数的应用.能将二次函数由一般式化为顶点式并理解二次函数的性质是解决此题的关键.6、D【分析】根据反比例函数和正比例函数的对称性可得,交点A与B关于原点对称,得到B点坐标,再观察图像即可得到的取值范围.【详解】解:∵比例函数和正比例函数的图象交于,两点,∴B的坐标为(1,3)观察函数图像可得,则的取值范围为或.故答案为:D【点睛】本题考查反比例函数的图像和性质.7、A【分析】所求方程的解即为两个交点A、B的横坐标,由于点A的横坐标已知,故只需求出点B的横坐标即可,亦即求出反比例函数的解析式即可,由于点A坐标已知,故反比例函数的解析式可求,问题得解.【详解】解:把点A(﹣1,1)代入,得m=﹣1,∴反比例函数的解析式是,当y=﹣1时,x=1,∴B的坐标是(1,﹣1),∴方程=kx+b的解是x1=1,x1=﹣1.故选:A.【点睛】本题考查了求直线与双曲线的交点和待定系数法求反比例函数的解析式,属于常考题型,明确两个函数交点的横坐标是对应方程的解是关键.8、D【分析】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,根据正方形的性质得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根据折叠的性质得到∠EDF=∠CDF,设OM=PM=x,根据相似三角形的性质即可得到结论.【详解】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,∵正方形的边长为,∴OD=1,OC=1,OQ=DQ=,由折叠可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,设OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故选D【点睛】此题考查正方形的性质,折叠的性质,相似三角形的性质与判定,角平分线的性质,解题关键在于作辅助线9、D【解析】∴选D10、B【分析】直接根据根与系数的关系求解.【详解】由题意知:,,∴原式=2-(-1)=3故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则,.二、填空题(每小题3分,共24分)11、四【分析】有二次函数的图象可知:,,进而即可得到答案.【详解】∵二次函数的图象与x轴有两个交点,∴,∵抛物线的对称轴在y轴的左侧,∴,即:,∴点在第四象限,故答案是:四【点睛】本题主要考查二次函数图象与性质,掌握二次函数图象与二次函数解析式的系数之间的关系,是解题的关键.12、【分析】已知等式左边通分并利用同分母分式的减法法则计算,整理得到a-b与ab的关系,代入原式计算即可求出值.【详解】解:∵,∴则,
故对答案为:.【点睛】此题考查了分式的加减法,以及分式的值,熟练掌握运算法则是解本题的关键.13、6【分析】根据相似三角形的性质即可得出答案.【详解】∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC∴∵∴又∴BC=6故答案为6.【点睛】本题考查的是相似三角形,比较简单,容易把三角形的相似比看成,这一点尤其需要注意.14、(2,﹣1)【详解】解:点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为(2,﹣1).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反.15、-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.16、<【分析】根据点与圆的位置关系,即可求解.【详解】解:的半径为点在内,.故答案为:.【点睛】本题考查的是点与圆的位置关系.17、.【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.18、1【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:1.故答案为:1.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.三、解答题(共66分)19、(1)函数y1的图像经过点C,见解析;(2);(3)①;②见解析【分析】(1)取x=0时,计算得,说明函数的图像经过点C;(2)将点C(0,)代入得,求得a的值;(3)①只要的对称轴始终在的对称轴右侧,就满足题目的要求,得出m的范围;②设点P的坐标为(,0),求得DE=,利用勾股定理求得AB=,即可说明结论.【详解】(1)函数的图像经过点C.理由如下:当x=0时,==,∴函数的图像经过点C.(2)将点C(0,)代入得:,∴,∵m为任意实数时,函数的图像始终经过点C,∴的成立与m无关,∴,∴;(3)①的对称轴为:,的对称轴为:,∵,∴两函数的图像开口向下,当时,x增大时,函数的值减小且函数的值增大.∴;②设点P的坐标为(,0),则=,=,∴DE===由①可知:,∴DE=;过A点作x轴的平行线,过B点作y轴的平行线,两平行线相交点F,则点F的坐标为(,),∴AF==,BF==,∴AB==,∴==,故的值只与点P的位置有关.【点睛】本题考查了二次函数的图象与系数之间的关系,抛物线的顶点坐标公式、对称轴方程、勾股定理,构造直角三角形ABF求得AB的长是解题的关键.20、(1);(2)点M的坐标为M(,5);(3)存在,Q(,)或(,)或(-3,1)或().【分析】(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中即可得;(2)直线AC的解析式为:,表达出DQ的长度,及△ADC的面积,根据二次函数的性质得出△ADC面积的最大值,从而得出D点坐标,作点D关于对称轴对称的点,确定点M,使DM+AM的值最小;(3)△BQC为等腰三角形,则表达出三边,并对三边进行分类讨论,计算得出Q点的坐标即可.【详解】解:(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中得,解得,∴,(2)直线AC的解析式为:设Q(m,m+4),则D(m,)DQ=()-(m+4)=当m=-2时,面积有最大值此时点D的坐标为D(-2,6),D点关于对称轴对称的点D1(-1,6)直线AD1的解析式为:当时,所以,点M的坐标为M(,5)(3)∵,∴设Q(t,t+4),由得,,∴B(1,0),∴,△BQC为等腰三角形①当BC=QC时,则,∴此时,∴Q(,)或(,);②当BQ=QC时,则,解得,∴Q();③当BQ=BC时,则,解得t=-3,∴Q(-3,1);综上所述,若△BQC为等腰三角形,则Q(,)或(,)或(-3,1)或().【点睛】本题考查二次函数与最短路径,面积最大值,动点存在性等几何的综合应用,难度较大,解题的关键是能够灵活运用二次函数的性质及几何知识.21、(1)每件童装应降价20元,(2)当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.【分析】(1)表示出销售数量,找到等量关系即可解题,(2)求出二次函数的表达式,化成顶点式即可解题.【详解】解:(1)设降了x元,则日销售量增加2x件,依题意得:(40-x)(20+2x)=1200,化简整理得:(x-10)(x-20)=0,解得:x=10或x=20,∵让顾客得到更多的实惠,∴每件童装应降价20元,(2)设销售利润为y,y=(40-x)(20+2x),y=-2(x-15)2+1250,∴当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.【点睛】本题考查了二次函数的实际应用,中等难度,建立等量关系是解题关键.22、甲型共享单车的单价是元.【分析】设甲型共享单车的单价是元,根据两种类型共享单车的投放量相同列方程求解即可.【详解】解:设甲型共享单车的单价是元,根据题意得:,解得:,经检验:是原方程的解,原方程的解是,答:甲型共享单车的单价是元.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.23、(1)图见解析;B′的坐标为(﹣1,3);(2).【分析】(1)过点C作B′C⊥BC,根据网格特征使B′C=BC,作A′C⊥AC,使A′C=AC,连接A′B′,△A′B′C即为所求,根据B′位置得出B′坐标即可;(2)根据旋转的性质可得∠ACA′=90°,利用勾股定理可求出AC的长,利用弧长公式求出的长即可.【详解】(1)如图所示,△A′B′C即为所求;B′的坐标为(﹣1,3).(2)∵A(3,3),C(0,﹣1).∴AC==5,∵∠ACA′=90°,∴点A经过的路径的长为:=.【点睛】本题考查旋转的性质及弧长公式,正确得出旋转后的对应边和旋转角是解题关键.24、(1)作图见解析;(2)四边形AECF为菱形,理由见解析.【解析】(1)按要求连接AC,分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q,作直线PQ,PQ分别与BC,AC,AD交于点E,O,F,连接AE、CF即可;(2)根据所作的是线段的垂直平分线结合平行四边形的性质,证明△OAF≌△OCE,继而得到OE=OF,从而得AC与EF互相垂直平分,根据对角线互相垂直平分的四边形是菱形即可得.【详解】(1)如图,AE、CF为所作;(2)四边形AECF为菱形,理由如下:∵EF垂直平分AC,∴OA=OC,EF⊥AC,∵四边形ABCD为平行四边形,∴AF∥CE,∴∠OAF=∠OCE,∠OFA=∠OEC,∴△OAF≌△OCE,∴OE=OF,∴AC与EF互相平分,∴四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度影视剧本委托创作合同3篇
- 2024年度建筑辅材施工环保要求合同2篇
- 盆骨骨折病人护理
- 收银员培训课件
- 护理培训课题
- 牛奶购销合同范文篇
- 2024年度高校产学研合作协议
- 《消化系统医学医药》课件
- 排风管道施工安全协议书
- 搅拌机结块清理安全责任合同
- 小学语文四年级上册第四单元作业设计
- 能源管理系统EMS用户需求说明书
- 药理学-抗结核药物-课件
- 华为5G站点开通配置指导手册2023年
- 高龄津贴“免申即享”改革实施方案
- 人工智能导论 课件 项目1、2 人工智能的前世今生、人工智能基础
- 缓冲托辊说明书
- 安抚(氟比洛芬酯注射液)-泌尿外科术后疼痛管理的基础药物
- 国际专利分类(IPC)新版
- 110kV通衢变电站电气监理细则(正式)
- 初识无人机课件
评论
0/150
提交评论