版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省濮阳市油田实验学校数学九上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变2.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10003.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.4.如图,抛物线与直线交于,两点,与直线交于点,将抛物线沿着射线方向平移个单位.在整个平移过程中,点经过的路程为()A. B. C. D.5.如图,为的直径,,为上的两点.若,,则的度数是()A. B. C. D.6.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.7.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点在同一直线上,若,则的长是()A. B. C.0.5 D.8.如图,△ABC内接于⊙O,OD⊥AB于D,OE⊥AC于E,连结DE.且DE=,则弦BC的长为()A. B.2 C.3 D.9.如图,厂房屋顶人字架(等腰三角形)的跨度BC=10m,∠B=36°,D为底边BC的中点,则上弦AB的长约为()(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m10.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐 B.甲队身高更整齐C.乙队身高更整齐 D.无法确定甲、乙两队身高谁更整齐11.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确12.点在二次函数y=x2+3x﹣5的图像上,x与y对应值如下表:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.3二、填空题(每题4分,共24分)13.比较大小:______4.14.若点、在同一个反比例函数的图象上,则的值为________.15.如图,正六边形ABCDEF内接于O,点M是边CD的中点,连结AM,若圆O的半径为2,则AM=____________.16.如图,A、B、C为⊙O上三点,且∠ACB=35°,则∠OAB的度数是______度.17.“蜀南竹海位于宜宾市境内”是_______事件;(填“确定”或“随机”)18.如图,内接于,于点,,若的半径,则的长为______.三、解答题(共78分)19.(8分)数学活动课上,老师提出问题:如图1,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成-一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式;(2)确定自变量的取值范围是(3)列出与的几组对应值.······(4)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点画出该函数的图象如图2,结合画出的函数图象,当小正方形的边长约为时,盒子的体积最大,最大值约为.(估读值时精确到)20.(8分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑.位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方法如下:如图所示,间接测得该塔底部点到地面上一点的距离为,塔的顶端为点,且,在点处竖直放一根标杆,其顶端为,在的延长线上找一点,使三点在同一直线上,测得.(1)方法1,已知标杆,求该塔的高度;(2)方法2,测得,已知,求该塔的高度.21.(8分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.22.(10分)如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.23.(10分)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.24.(10分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.25.(12分)体育文化公司为某学校捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.
(1)下列事件是不可能事件的是.A.选购乙品牌的D型号B.既选购甲品牌也选购乙品牌C.选购甲品牌的A型号和乙品牌的D型号D.只选购甲品牌的A型号(2)写出所有的选购方案(用列表法或树状图);(3)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?26.消费者在某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸.现将张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖,她从中随机翻开一张纸牌,小杨获奖的概率是________.(2)如粜小杨、小月都有翻两张牌的机会,小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过画树状图或列表法分析说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】如图,作辅助线;首先证明△BEO∽△OFA,,得到;设B为(a,),A为(b,),得到OE=-a,EB=,OF=b,AF=,进而得到,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴,设点B为(a,),A为(b,),则OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根据勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.2、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.3、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.4、B【分析】根据题意抛物线沿着射线方向平移个单位,点A向右平移4个单位,向上平移2个单位,可得平移后的顶点坐标.设向右平移a个单位,则向上平移a个单位,抛物线的解析式为y=(x+1-a)²-1+a,令x=2,y=(a-)²+,由0≤a≤4,推出y的最大值和最小值,根据点D的纵坐标的变化情形,即可解决问题.【详解】解:由题意,抛物线沿着射线方向平移个单位,点A向右平移4个单位,向上平移2个单位,∵抛物线=(x+1)²-1的顶点坐标为(-1,-1),设抛物线向右平移a个单位,则向上平移a个单位,抛物线的解析式为y=(x+1-a)²-1+a令x=2,y=(3-a)²-1+a,∴y=(a-)²+,∵0≤a≤4∴y的最大值为8,最小值为,∵a=4时,y=2,∴8-2+2(2-)=故选:B【点睛】本题考查的是抛物线上的点在抛物线平移时经过的路程问题,解决问题的关键是在平移过程中点D的移动规律.5、B【分析】先连接OC,根据三条边都相等可证明△OCB是等边三角形,再利用圆周角定理即可求出角度.【详解】解:如图,连接OC.∵AB=2,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=∠COB=30°.故选:B.【点睛】本题考查圆周角定理,等边三角形的判定及性质等知识,作半径是圆中常用到的辅助线需熟练掌握.6、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【详解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故选:C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.7、D【分析】过点D作BC的垂线DF,垂足为F,由题意可得出BC=AD=2,进而得出DF=BF=1,利用勾股定理可得出AF的长,即可得出AB的长.【详解】解:过点D作BC的垂线DF,垂足为F,由题意可得出,BC=AD=2,根据等腰三角形的三线合一的性质可得出,DF=BF=1利用勾股定理求得:∴故选:D.【点睛】本题考查的知识点是等腰直角三角形的性质,灵活运用等腰直角三角形的性质是解此题的关键.8、C【分析】由垂径定理可得AD=BD,AE=CE,由三角形中位线定理可求解.【详解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故选:C.【点睛】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.9、B【分析】先根据等腰三角形的性质得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入计算可得.【详解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故选:B.【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt△ABD,再利用三角函数求解.10、B【解析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键11、A【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.12、C【分析】观察表格可得0.04更接近于0,得到所求方程的近似根即可.【详解】解:观察表格得:方程x2+3x−5=0的一个近似根为1.2,故选:C.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.二、填空题(每题4分,共24分)13、>【分析】用放缩法比较即可.【详解】∵,∴>3+1=4.故答案为:>.【点睛】此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.在应用“夹逼法”估算无理数时,关键是找出位于无理数两边的平方数,则无理数的整数部分即为较小的平方数的算术平方根.14、【分析】设反比例函数的解析式为(k为常数,k≠0),把A(3,8)代入函数解析式求出k,得出函数解析式,把B点的坐标代入,即可求出答案.【详解】解:设反比例函数的解析式为(k为常数,k≠0),把A(3,8)代入函数解析式得:k=24,即,把B点的坐标代入得:故答案为−6.【点睛】考查待定系数法求反比例函数解析式,熟练掌握待定系数法是解题的关键.15、【分析】连接AD,过M作MG⊥AD于G,根据正六边形的相关性质,求得AD,MD的值,再根据∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【详解】解:连接AD,过M作MG⊥AD于G,则由正六边形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案为.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,作出辅助线构造直角三角形是解题的关键.16、1【分析】根据题意易得∠AOB=70°,然后由等腰三角形的性质及三角形内角和可求解.【详解】解:∵OA=OB,∴∠OAB=∠OBA,∵∠ACB=35°,∴∠AOB=2∠ACB=70°,∴;故答案为1.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.17、确定【分析】根据“确定定义”或“随机定义”即可解答.【详解】“蜀南竹海是国家AAAA级旅游胜地,位于宜宾市境内”,所以是确定事件.故答案为:确定.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,确定事件包括必然事件、不可能事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,.18、【分析】连接OC,先证出△ADB为等腰直角三角形,从而得出∠ABD=45°,然后根据同弧所对的圆周角是圆心角的一半即可求出∠AOC,然后根据勾股定理即可求出AC.【详解】解:连接OC∵,,∴△ADB为等腰直角三角形∴∠ABD=45°∴∠AOC=2∠ABD=90°∵的半径∴OC=OA=2在Rt△OAC中,AC=故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、圆周角定理和勾股定理,掌握等腰直角三角形的判定及性质、同弧所对的圆周角是圆心角的一半和利用勾股定理解直角三角形是解决此题的关键.三、解答题(共78分)19、(1);(2);(3)3,2;(4)0.55【分析】(1)根据长方形和正方形边长分别求出长方体的长、宽、高,然后即可得出和的关系式;(2)边长都大于零,列出不等式组,求解即可;(3)将的值代入关系式,即可得解;(4)根据函数图象,由最大值即可估算出的值.【详解】(1)由题意,得长方体的长为,宽为,高为∴y和x的关系式:(2)由(1)得∴变量x的取值范围是;(3)将和代入(1)中关系式,得分别为3,2;(4)由图象可知,与3.03对应的值约为0.55.【点睛】此题主要考查展开图折叠成长方体,以及与函数的综合运用,熟练掌握,即可解题.20、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定与性质得出,进而得出答案;(2)根据锐角三角函数的定义列出,然后代入求值即可.【详解】解:则即解得:答:该塔的高度为55m.在中答:该塔的高度为【点睛】本题考查相似三角形的判定和性质及解直角三角形的应用,熟练掌握相似三角形对应边的比相等和角的正切值的求法是本题的解题关键.21、或【分析】分别将已知的两个等式相加和相减,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代数式的值即可.【详解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴将⑤分别代入④得,x﹣y=或x﹣y=﹣,∴或当时,当时,
故答案为:或【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.22、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)将点A分别代入y=-x2+bx+3,y=x+c中求出b、c的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D的坐标;(2))过点E作EF⊥y轴,设E(x,-x2+2x+3),先求出点B、C的坐标,再利用面积加减关系表示出△CBE的面积,即可求出点E的坐标.(3)分别以点D、M、N为直角顶点讨论△MND是等腰直角三角形时点N的坐标.【详解】(1)将A(-1,0)代入y=-x2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x2+2x+3,将点A代入y=x+c中,得-1+c=0,解得c=1,∴y=x+1,解,解得,(舍去),∴D(2,3).∴b=2,c=1,D(2,3).(2)过点E作EF⊥y轴,设E(x,-x2+2x+3),当y=-x2+2x+3中y=0时,得-x2+2x+3=0,解得x1=3,x2=-1(舍去),∴B(3,0).∵C(0,3),∴,∴,解得x1=4,x2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD的解析式为y=x+1,设P(m,m+1),则Q(m,-m2+2m+3),∴线段PQ的长度h=-m2+2m+3-(m+1)=,∴当=0.5,线段PQ有最大值.当∠D是直角时,不存在△MND是等腰直角三角形的情形;当∠M是直角时,如图1,点M在线段DN的垂直平分线上,此时N1(2,0);当∠M是直角时,如图2,作DE⊥x轴,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N的坐标.23、(1)y=;y=x+1;(2)P点的坐标为(3,0)或(﹣5,0).【解析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P的坐标.【详解】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点睛】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.24、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将x=h代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a>0可得出当x=h=1时y1=a(x﹣h)2+2取得最小值2,结合当t≤x≤t+3时二次函数y1=a(x﹣h)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1=y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出>1或<﹣1,再结合1≤k≤3,即可求出a的取值范围.【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钳工装配知识培训课件
- 团队精神建设
- 二零二五年度房地产项目联合开发合作节能减排合同3篇
- 2025版酒店客房装饰材料采购合同2篇
- 传统节日之元宵节
- 二零二五年度城市观光包车租赁合同2篇
- 二零二五年度大摩退出中金战略合作终止倒计时协议2篇
- 二零二五年度房建防水劳务分包合同(含设计变更)范本3篇
- 贵州商学院《房地产法学》2023-2024学年第一学期期末试卷
- 贵州黔南科技学院《建筑供配电与照明》2023-2024学年第一学期期末试卷
- 个人房屋租赁合同电子版下载(标准版)
- 福建省泉州市2019-2020学年高二上学期期末物理试卷(含答案)
- 高中生物学科思维导图(人教版必修二)
- 城市轨道交通安全管理课件(完整版)
- 监理日志表(标准模版)
- 视频监控系统PPT幻灯片课件(PPT 168页)
- GM∕T 0045-2016 金融数据密码机技术规范
- 人力资源部年度工作计划表(超级详细版)
- 《轮机英语》试题(二三管轮)
- 部编版二年级语文下册《蜘蛛开店》
- 北师大二年级数学上教学反思
评论
0/150
提交评论