版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省厦门市金鸡亭中学九年级数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A. B. C. D.2.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A'B'与AB的相似比为,得到线段A'B'.正确的画法是()A. B. C. D.3.如图,为线段上一点,与交与点,,交与点,交与点,则下列结论中错误的是()A. B. C. D.4.二次函数图象如图,下列结论正确的是()A. B.若且,则C. D.当时,5.若,,则的值为()A. B. C. D.6.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<27.方程的解的个数为()A.0 B.1 C.2 D.1或28.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形9.小苏和小林在如图所示①的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图所示②.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点;B.小苏跑全程的平均速度大于小林跑全程的平均速度;C.小苏前15s跑过的路程大于小林前15s跑过的路程;D.小林在跑最后100m的过程中,与小苏相遇2次;10.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形
②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2
④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.411.若函数y=的图象在其象限内y的值随x的增大而增大,则m的取值范围是()A.m>2 B.m<2 C.m>-2 D.m<-212.若,则下列各式一定成立的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知二次函数的图象如图所示,并且关于的一元二次方:有两个不相等的实数根,下列结论:①;②;③;④,其中正确的有__________.14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.15.若,那么△ABC的形状是___.16.方程x(x﹣2)﹣x+2=0的正根为_____.17.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有.(填序号)18.一中和二中举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:学校参赛人数平均数中位数方差一中45838682二中458384135某同学分析上表后得到如下结论:.①一中和二中学生的平均成绩相同;②一中优秀的人数多于二中优秀的人数(竞赛得分85分为优秀);③二中成绩的波动比一中小.上述结论中正确的是___________.(填写所有正确结论的序号)三、解答题(共78分)19.(8分)2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至处,观测指挥塔位于南偏西方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达处,再观测指挥塔位于南偏西方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)20.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点M的坐标(x,y).(1)写出点M所有可能的坐标;(2)求点M在直线上的概率.21.(8分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n)两点.(1)求反比例函数的解析式;(2)过B点作BC⊥x轴,垂足为C,若P是反比例函数图象上的一点,连接PC,PB,求当△PCB的面积等于5时点P的坐标.22.(10分)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.23.(10分)如图,已知抛物线与x轴交于点A、B,与y轴分别交于点C,其中点,点,且.(1)求抛物线的解析式;(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点M的坐标.24.(10分)在Rt△ABC中,∠ACB=90°,AC=BC=3,点D是斜边AB上一动点(点D与点A、B不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.(1)求△ADE的周长的最小值;(2)若CD=4,求AE的长度.25.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.26.解一元二次方程:x2+4x﹣5=1.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据列表法列出所有的可能情况,从中找出两个球颜色相同的结果数,再利用概率的公式计算即可得到答案.【详解】解:列表如图所示:由表可知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果所以摸出两个球颜色相同的概率是故选:C.【点睛】本题考查的是列表法与树状图的知识,解题的关键是能够用列表或者树状图将所有等可能结果列举出来.2、D【分析】根据题意分两种情况画出满足题意的线段A′B′,即可做出判断.【详解】解:画出图形,如图所示:
故选D.【点睛】此题考查作图-位似变换,解题关键是画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.3、A【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角,故可进行判断.【详解】∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故结论中错误的是A,故选A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理.4、D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a<0,b>0,c>0,,∴abc<0,故A选项错误;若且,∴对称轴为,故B选项错误;∵二次函数的图象的对称轴为直线x=1,与x轴的一个交点的横坐标小于3,∴与x轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c<0,故C选项错误;∵二次函数的图象的对称轴为直线x=1,开口向下,∴函数的最大值为y=a+b+c,∴,∴,故D选项正确,故选:D.【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.5、D【分析】先利用平方差公式得到=(a+b)(a-b),再把,整体代入即可.【详解】解:=(a+b)(a-b)==.故答案为D.【点睛】本题考查了平方差公式,把a+b和a-b看成一个整体是解题的关键.6、C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<,所以不等式组mx>kx+b>mx−2的解集是1<x<.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7、C【解析】根据一元二次方程根的判别式,求出△的值再进行判断即可.【详解】解:∵x2=0,
∴△=02-4×1×0=0,∴方程x2=0有两个相等的实数根.故选C【点睛】本题考查的是一元二次方程根的判别式,当△>0时方程有两个不相等的实数根,△=0时方程有两个相等的实数根,△<0时方程没有实数根.8、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.9、D【分析】依据函数图象中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系,即可得到正确结论.【详解】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;
故选:D.【点睛】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10、C【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.11、B【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】∵函数y=的图象在其象限内y的值随x值的增大而增大,∴m−1<0,解得m<1.
故选:B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.12、B【分析】由等式的两边都除以,从而可得到答案.【详解】解:等式的两边都除以:,故选B.【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的基本性质,等式的基本性质,掌握以上知识是解题的关键.二、填空题(每题4分,共24分)13、③【分析】①利用可以用来判定二次函数与x轴交点个数,即可得出答案;②根据图中当时的值得正负即可判断;③由函数开口方向可判断的正负,根据对称轴可判断的正负,再根据函数与轴交点可得出的正负,即可得出答案;④根据方程可以看做函数,就相当于函数(a0)向下平移个单位长度,且与有两个交点,即可得出答案.【详解】解:①∵函数与轴有两个交点,∴,所以①错误;②∵当时,,由图可知当,,∴,所以②错误;③∵函数开口向上,∴,∵对称轴,,∴,∵函数与轴交于负半轴,∴,∴,所以③正确;④方程可以看做函数当y=0时也就是与轴交点,∵方程有两个不相等的实数根,∴函数与轴有两个交点∵函数就相当于函数向下平移个单位长度∴由图可知当函数向上平移大于2个单位长度时,交点不足2个,∴,所以④错误.正确答案为:③【点睛】本题考查了二次函数与系数的关系:可以用来判定二次函数与x轴交点的个数,当时,函数与x轴有2个交点;当时,函数与x轴有1个交点;当时,函数与x轴没有交点.;二次函数系数中决定开口方向,当时,开口向上,当时,开口向下;共同决定对称轴的位置,可以根据“左同右异”来判断;决定函数与轴交点.14、-2或1.【解析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.15、等边三角形【分析】由非负性和特殊角的三角函数值,求出∠A和∠B的度数,然后进行判断,即可得到答案.【详解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形;故答案为:等边三角形.【点睛】本题考查了特殊角的三角函数值,非负性的应用,解题的关键是熟练掌握非负数的性质,正确得到∠A和∠B的度数.16、x=1或x=2【分析】利用提取公因式法解方程即可得答案.【详解】∵x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得:x=2或x=1,故答案为:x=1或x=2【点睛】本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17、①③④【解析】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.考点:翻折变换的性质、菱形的判定与性质、勾股定理18、①②【分析】根据表格中的数据直接得出平均数相同,再根据一中成绩的中位数86>85可判断一中优秀人数较多,最后根据方差越大,成绩波动越大判断波动性.【详解】由表格数据可知一中和二中的平均成绩相同,故①正确;∵一中成绩的中位数86>85,二中成绩的中位数84<85,竞赛得分85分为优秀∴一中优秀的人数多于二中优秀的人数故②正确;二中的方差大于一中,则二中成绩的波动比一中大,故③错误;故答案为:①②【点睛】本题考查平均数,中位数与方差,难度不大,熟练掌握基本概念是解题的关键.三、解答题(共78分)19、【分析】过P作PH⊥MN于H,构建直角三角形,设PH=x海里,分别在两个直角三角形△PHN和△PHM中利用正切函数表示出NH长和MH长,列方程求解.【详解】过P作PH⊥MN,垂足为H,设PH=x海里,在Rt△PHN,tan∠PNH=,∴tan45°=,∴NH=,在Rt△PHM中,tan∠PMH=,∴tan30°=,∴MH=,∵MN=30×2=60海里,∴,∴.答:“山东舰”与指挥塔之间的最近距离为海里.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.20、点M坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).(2).【解析】试题分析:(1)通过列表展示所有9种等可能的结果数;
(2)找出满足点落在函数的图象上的结果数,然后根据概率公式求解.试题解析:(1)列表如下:yx1230(0,1)(0,2)(0,3)1(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)从表格中可知,点M坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).共有9种等可能的结果数;(2)当x=0时,y=-0+3=3,当x=1时,y=-1+3=2,当x=2时,y=-2+3=1,由(1)可得点M坐标总共有九种可能情况,点M落在直线上(记为事件A)有3种情况.21、(1)y=;(2)点P的坐标为(﹣8,﹣),(2,3).【分析】(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;
(2)由B点(-3,n)在反比例函数y=的图象上,于是得到B(-3,-2),求得BC=2,设△PBC在BC边上的高为h,根据三角形的面积公式列方程即可得到结论.【详解】(1)∵反比例函数y=的图象经过点A(2,3),∴m=1.∴反比例函数的解析式是y=;(2)∵B点(﹣3,n)在反比例函数y=的图象上,∴n=﹣2,∴B(﹣3,﹣2),∴BC=2,设△PBC在BC边上的高为h,则BC•h=5,∴h=5,∵P是反比例函数图象上的一点,∴点P的横坐标为:﹣8或2,∴点P的坐标为(﹣8,﹣),(2,3).【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,一次函数与坐标轴的交点,以及反比例函数的图象与性质,熟练掌握待定系数法是解本题的关键.22、(1)见解析;(2)2-【分析】(1)若要证明CD是⊙O的切线,只需证明CD与半径垂直,故连接OE,证明OE∥AD即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线;(2)∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴阴影部分面积=S△OCE﹣S扇形OBE=2×2﹣=2﹣.【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.23、(1);(2)当时,S最大,此时;(3)或【分析】(1)先根据射影定理求出点,设抛物线的解析式为:,将点代入求出,然后化为一般式即可;(2)过点P作y轴的平行线交BC于点E,设,用待定系数法分别求出直线BC,直线AC,直线PD的解析式,表示出点E,点D的坐标,然后根据三角形面积公式列出二次函数解析式,利用二次函数的性质求解即可;(3)分两种情况求解:当时和当时.【详解】(1)∵,,∴,.∵,∴由射影定理可得:,∴,∴点,设抛物线的解析式为:,将点代入上式得:,∴抛物线的解析式为:;(2)过点P作y轴的平行线交BC于点E,设,设,把,代入得,∴,∴,∴,同样的方法可求,故可设,把代入得,联立解得:,∴,,故当时,S最大,此时;(3)由题知,,当时,,∴点C与点M关于对称轴对称,∴;当时,过M作于F,过F作y轴的平行线,交x轴于G,交过M平行于x轴的直线于K,∵∠,BFM=∠BGF,∴△MFK∽△FGB,同理可证:,∴,,设,则,∴,∴,代入,解得,或(舍去),∴,故或.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的图像与性质,一次函数图像交点坐标与二元一次方程组解的关系,相似三角形的判定与性质,以及分类讨论的数学思想,难度较大,属中考压轴题.24、(1)6+;(2)3﹣或3+【分析】(1)根据勾股定理得到AB=AC=6,根据全等三角形的性质得到AE=BD,当DE最小时,△ADE的周长最小,过点C作CF⊥AB于点F,于是得到结论;(2)当点D在CF的右侧,当点D在CF的左侧,根据勾股定理即可得到结论【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC=3∴AB=AC=6,∵∠ECD=∠ACB=90°,∴∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∴△ADE的周长=AE+AD+DE=AB+DE,∴当DE最小时,△ADE的周长最小,过点C作CF⊥AB于点F,当CD⊥AB时,CD最短,等于3,此时DE=3,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重点中学德育工作计划
- 2025年下学期小学一年级班主任工作计划
- 体育锻炼小计划
- 采购人员年终总结及计划范文
- 2025初二工作计划范文
- 英语六级复习计划不求高分只求通过
- 《歌唱基本常识》课件
- 《电工电子技术基础》课件-第1章
- 《大众汽车社会责任》课件
- 通道门安全协议书范本
- 装修逾期索赔合同范例
- 【MOOC】全新版大学进阶英语综合教程II-内蒙古大学 中国大学慕课MOOC答案
- 印刷保密协议
- 辅导员年终汇报
- 中国当代文学专题-003-国开机考复习资料
- 【MOOC】综合英语-中南大学 中国大学慕课MOOC答案
- 2025年1月“八省联考”考前猜想卷历史试题02 含解析
- 人教版2025九年级道德与法治中考备考复习计划
- 农村集体经济组织内部控制制度
- 淮阴工学院《供应链管理3》2022-2023学年第一学期期末试卷
- 预防校园欺凌主题班会课件(共36张课件)
评论
0/150
提交评论