天津市河西区环湖中学2025届九年级数学第一学期期末联考模拟试题含解析_第1页
天津市河西区环湖中学2025届九年级数学第一学期期末联考模拟试题含解析_第2页
天津市河西区环湖中学2025届九年级数学第一学期期末联考模拟试题含解析_第3页
天津市河西区环湖中学2025届九年级数学第一学期期末联考模拟试题含解析_第4页
天津市河西区环湖中学2025届九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市河西区环湖中学2025届九年级数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,为的直径,弦于点,,,则的半径为()A.5 B.8 C.3 D.102.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣33.如图,中,,在同一平面内,将绕点旋转到的位置,使得,则旋转角等于()A. B. C. D.4.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A. B. C. D.5.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=15006.一个布袋里装有10个只有颜色不同的球,其中4个黄球,6个白球.从布袋里任意摸出1个球,则摸出的球是黄球的概率为()A. B. C. D.7.关于x的一元二次方程x2﹣2x﹣m=0有实根,则m的值可能是()A.﹣4 B.﹣3 C.﹣2 D.﹣18.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.9.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有()A.最大值 B.最小值 C.最大值= D.最小值=10.函数与在同一直角坐标系中的大致图象可能是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.则从点摆动到点经过的路径长为________.12.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.13.如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为_____.14.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.15.分解因式:x3﹣4x2﹣12x=_____.16.抛物线与轴交点坐标为______.17.函数是反比例函数,且图象位于第二、四象限内,则n=____.18.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_____.三、解答题(共66分)19.(10分)已知抛物线(是常数)经过点.(1)求该抛物线的解析式和顶点坐标.(2)若点在抛物线上,且点关于原点的对称点为.①当点落在该抛物线上时,求的值;②当点落在第二象限内,取得最小值时,求的值.20.(6分)如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是.请直接写出点的坐标(,);求该一次函数的解析式;求的面积.21.(6分)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.22.(8分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.23.(8分)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°(2)如图2,当α=60°时,∠AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.24.(8分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.25.(10分)已知,如图,是直角三角形斜边上的中线,交的延长线于点.求证:;若,垂足为点,且,求的值.26.(10分)如图1,是一种自卸货车.如图2是货箱的示意图,货箱是一个底边AB水平的矩形,AB=8米,BC=2米,前端档板高DE=0.5米,底边AB离地面的距离为1.3米.卸货时,货箱底边AB的仰角α=37°(如图3),求此时档板最高点E离地面的高度.(精确到0.1米,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

参考答案一、选择题(每小题3分,共30分)1、A【分析】作辅助线,连接OA,根据垂径定理得出AE=BE=4,设圆的半径为r,再利用勾股定理求解即可.【详解】解:如图,连接OA,设圆的半径为r,则OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.2、C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.3、B【分析】由平行线的性质得出,由旋转的性质可知,则有,然后利用三角形内角和定理即可求出旋转角的度数.【详解】由旋转的性质可知所以旋转角等于40°故选:B.【点睛】本题主要考查平行线的性质,等腰三角形的性质和旋转的性质,掌握旋转角的概念及平行线的性质,等腰三角形的性质和旋转的性质是解题的关键.4、C【解析】A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,故选C.5、A【详解】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选A.6、B【分析】用黄球的个数除以球的总个数即为所求的概率.【详解】因为一共有10个球,其中黄球有4个,

所以从布袋里任意摸出1个球,摸到白球的概率为.故选:B.【点睛】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.7、D【分析】根据题意可得,≥0,即可得出答案.【详解】解:∵关于x的一元二次方程x2﹣2x﹣m=0有实根,∴△=(﹣2)2﹣4×1×(﹣m)≥0,解得:m≥﹣1.故选D.【点睛】本题考查的是一元二次方程的根的判别式,当时,有两个不等实根;当时,有两个相等实根;当时,没有实数根.8、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【点睛】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.9、D【解析】解:由当时有最大值,得时,,,反比例函数解析式为,当时,图象位于第四象限,随的增大而增大,当时,最小值为故选D.10、B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o时,函数的图象位于一、三象限,的开口向下,交y轴的负半轴,选项B符合;当a<o时,函数的图象位于二、四象限,的开口向上,交y轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,由题意可得∠AOP=60°,∠BOQ=30°,进而得∠AOB=90°,设OA=OB=x,分别在Rt△AOP和Rt△BOQ中,利用解直角三角形的知识用含x的代数式表示出OP和OQ,从而可得关于x的方程,解方程即可求出x,然后再利用弧长公式求解即可.【详解】解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,设OA=OB=x,则在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,则从点A摆动到点B经过的路径长为cm,故答案为:.【点睛】本题考查了解直角三角形的应用和弧长公式的计算,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题的关键.12、10【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.13、1【分析】根据平行线分线段成比例定理得到,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴,即,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.14、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.15、x(x+2)(x-6).【分析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.首先提取公因式x,然后利用十字相乘法求解,【详解】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).【点睛】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键.16、【分析】令x=0,求出y的值即可.【详解】解:∵当x=0,则y=-1+3=2,∴抛物线与y轴的交点坐标为(0,2).【点睛】本题考查的是二次函数的性质,熟知y轴上点的特点,即y轴上的点的横坐标为0是解答此题的关键.17、-1.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=(k≠0),故可知n+1≠0,即n≠-1,且n1-5=-1,解得n=±1,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-1.故答案为:-1【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键.18、-1.【解析】分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.

详解:把x=0代入方程得:

|a|-1=0,

∴a=±1,

∵a-1≠0,

∴a=-1.

故选A.

点睛:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.三、解答题(共66分)19、(1),顶点的坐标为(1,-4);(2)①,;②.【分析】(1)把坐标代入求出解析式,再化为顶点式即可求解;(2)①由对称性可表示出P’的坐标,再由P和P’都在抛物线上,可得到m的方程,即可求出m的值;②由点P’在第二象限,可求出t的取值,利用两点间的距离公式可用t表示,再由带你P’在抛物线上,可消去m,整理得到关于t的二次函数,利用二次函数的性质即可求出最小值时t的值,则可求出m的值.【详解】(1)∵抛物线经过点,∴,解得,∴抛物线的解析式为.∵,∴顶点的坐标为.(2)①由点在抛物线上,有.∵关于原点的对称点为,有.∴,即,∴,解得,.②由题意知在第二象限,∴,,即,.则在第四象限.∵抛物线的顶点坐标为,∴.过点作轴,为垂足,则.∵,,∴,.当点和不重合时,在中,.当点和重合时,,,符合上式.∴,即.记,则,∴当时,取得最小值.把代入,得,解得,,由,可知不符合题意,∴.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的性质.20、(1);(2);(3)1【分析】(1)根据正比例函数即可得出答案;(2)根据点A和B的坐标,利用待定系数法求解即可;(3)先根据题(2)求出点C的坐标,从而可知OC的长,再利用三角形的面积公式即可得.【详解】(1)将代入正比例函数得,故点的坐标是;(2)设这个一次函数的解析式为把代入,得解方程组,得故这个一次函数的解析式为;(3)在中,令,得即点的坐标是,则的面积故的面积为1.【点睛】本题考查了一次函数的几何应用、利用待定系数法求一次函数的解析式,掌握一次函数的图象与性质是解题关键.21、(1)详见解析;(2)详见解析【分析】(1)连接OA,由等边三角形性质和圆周角定理可得∠AOC的度数,从而得到∠OCA,再由AP=AC得到∠PAC,从而算出∠PAO的度数;(2由切线长定理得PA,PB,从而说明PO垂直平分AB,得到CB=CA,再根据∠ABC=60°,从而判定等边三角形.【详解】解:(1)证明:连接.又是半径,是的切线.(2)证明:连接是的切线,是的垂直平分线.是等边三角形.【点睛】本题考查了外接圆的性质,垂直平分线的判定和性质,切线的性质,等腰三角形的性质,等边三角形的判定,此题难度适中,解题的关键是准确作出辅助线,从而进行证明.22、.【分析】首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.【详解】∵在直角△ABD中,tan∠BAD=,∴BD=AD•tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.23、(1)1;(2)2;(3)∠AMD=180°﹣α,证明详见解析.【解析】(1)如图1中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,可得∠AMK=∠BOK=1°;(2)如图2中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=2°;(3)如图3中,设OA交BD于K.只要证明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α.【详解】(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=1°.故答案为1.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=2°.故答案为2.(3)如图3中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°﹣α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.24、(1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为1可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;(2)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.【详解】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,∵,∴点的坐标为,代入抛物线的解析式得,,∴,∴抛物线的解析式为,即.令,解得,,∴,∴,∵的面积为1,∴,∴,代入抛物线解析式得,,解得,,∴,设直线的解析式为,∴,解得:,∴直线的解析式为.(2)过点作轴交于,如图,设,则,∴,∴,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论