




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省茂名地区九上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10 B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0 D.a=﹣1,b=0,c=62.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.65° B.60° C.55° D.50°3.如图,以点为位似中心,将放大得到.若,则与的位似比为().A. B. C. D.4.已知点A(x1,y1),B(x2,y2)在双曲线y=上,如果x1<x2,而且x1•x2>0,则以下不等式一定成立的是()A.y1+y2>0 B.y1﹣y2>0 C.y1•y2<0 D.<05.若反比例函数的图象经过点,则这个函数的图象一定还经过点()A. B. C. D.6.二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足,图象与轴相交于两点,与轴相交于点.给出下列结论:①;②;③若,则;④.其中正确的个数是()A.1 B.2 C.3 D.47.△ABC中,∠C=90°,内切圆与AB相切于点D,AD=2,BD=3,则△ABC的面积为()A.3 B.6 C.12 D.无法确定8.如图,抛物线交x轴的负半轴于点A,点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上.过点Aʹ作x轴的平行线交抛物线于另一点C,则点Aʹ的纵坐标为()A.1.5 B.2 C.2.5 D.39.已知是方程x2﹣3x+c=0的一个根,则c的值是()A.﹣6 B.6 C. D.210.下列事件中,必然发生的为()A.奈曼旗冬季比秋季的平均气温低 B.走到车站公共汽车正好开过来C.打开电视机正转播世锦赛实况 D.掷一枚均匀硬币正面一定朝上11.抛物线y=(x-4)(x+2)的对称轴方程为()A.直线x=-2 B.直线x=1 C.直线x=-4 D.直线x=412.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形 B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴 D.圆的对称中心是它的圆心二、填空题(每题4分,共24分)13.在一个不透明的袋子中有1个红球和3个白球,这些球除颜色外都相同,在袋子中再放入个白球后,从袋子中随机摸出1个球,记录下颜色后放回袋子中并搅匀,经大量试验,发现摸到白球的频率稳定在0.95左右,则______.14.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.15.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是_____(填甲或乙)16.如图所示平面直角坐标系中,点A,C分别在x轴和y轴上,点B在第一象限,BC=BA,∠ABC=90°,反比例函数y=.(x>0)的图象经过点B,若OB=2,则k的值为_____.17.正的边长为,边长为的正的顶点与点重合,点分别在,上,将沿边顺时针连续翻转(如图所示),直至点第一次回到原来的位置,则点运动路径的长为(结果保留)18.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是______________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.20.(8分)解方程:(l)(2)(配方法).21.(8分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表:班级中位数(分)众数(分)九(1)85九(2)100(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?22.(10分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.23.(10分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?24.(10分)如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠B=35°,求∠CAE度数.25.(12分)如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)26.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
参考答案一、选择题(每题4分,共48分)1、D【分析】将所得抛物线解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移减逆向求出原抛物线的顶点坐标,从而求出原抛物线解析式,再展开整理成一般形式,最后确定出a、b、c的值.【详解】解:∵y=-(x+2)2+3,∴抛物线的顶点坐标为(-2,3),∵抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位长度得抛物线y=-(x+2)2+3,-2+2=0,3+3=1,∴平移前抛物线顶点坐标为(0,1),∴平移前抛物线为y=-x2+1,∴a=-1,b=0,c=1.故选D.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减;本题难点在于逆运用规律求出平移前抛物线顶点坐标.2、A【分析】连结BD,由于点D是的中点,即,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.【详解】解:连结BD,如图,∵点D是的中点,即,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选:A.【点睛】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.3、A【解析】以点为个位中心,将放大得到,,可得,因此与的位似比为,故选A.4、B【分析】根据题意可得x1<x2,且x1、x2同号,根据反比例函数的图象与性质可得y1>y2,即可求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而x1<x2,且x1、x2同号,所以y1>y2,即y1﹣y2>0,故选:B.【点睛】本题考查反比例函数的图象与性质,掌握反比例函数的图象与性质是解题的关键.5、A【分析】根据反比例函数的定义,得,分别判断各点的乘积是否等于,即可得到答案.【详解】解:∵反比例函数的图象经过点,∴;∵,故A符合题意;∵,,,故B、C、D不符合题意;故选:A.【点睛】本题考查了反比例函数的定义,解题的关键是熟记定义,熟练掌握.6、C【分析】根据对称轴的位置、开口方向、与y轴的交点可对①②④进行判断,根据,转化为代数,计算的值对③进行判断即可.【详解】解:①∵抛物线开口向下,∴,∵抛物线对称轴为直线,∴,∴∴,故①正确,②∵,,∴,又∵抛物线与y轴交于负半轴,∴,∴,故②错误,③∵点C(0,c),,点A在x轴正半轴,∴A,代入得:,化简得:,又∵,∴即,故③正确,④由②可得,当x=1时,,∴,即,故④正确,所以正确的是①③④,故答案为C.【点睛】本题考查了二次函数中a,b,c系数的关系,根据图象得出a,b,c的的关系是解题的关键.7、B【分析】易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案.【详解】如图,设⊙O分别与边BC、CA相切于点E、F,连接OE,OF,
∵⊙O分别与边AB、BC、CA相切于点D、E、F,
∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,
∴∠OEC=∠OFC=90°,
∵∠C=90°,
∴四边形OECF是矩形,
∵OE=OF,
∴四边形OECF是正方形,
设EC=FC=r,
∴AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,
在Rt△ABC中,=+,
∴=+,
∴,
即
解得:或(舍去).
∴⊙O的半径r为1,∴.故选:B【点睛】本题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.8、B【分析】先求出点A坐标,利用对称可得点横坐标,代入可得纵坐标.【详解】解:令得,即解得点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上点的横坐标为1当时,所以点Aʹ的纵坐标为2.故选:B【点睛】本题考查了二次函数的图像,熟练利用函数解析式求点的坐标是解题的关键.9、B【解析】把x=代入方程x2-3x+c=0,求出所得方程的解即可.【详解】把x=代入方程x2-3x+c=0得:3-9+c=0,解得:c=6,故选B.【点睛】本题考查了一元二次方程的解的应用,解此题的关键是得出关于c的方程.10、A【分析】根据必然事件的定义选出正确选项.【详解】解:A选项是必然事件;B选项是随机事件;C选项是随机事件;D选项是随机事件.故选:A.【点睛】本题考查必然事件和随机事件,解题的关键是掌握必然事件和随机事件的定义.11、B【解析】把抛物线解析式整理成顶点式解析式,然后写出对称轴方程即可.【详解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴对称轴方程为x=1.故选:B.【点睛】本题考查了二次函数的性质,是基础题,把抛物线解析式整理成顶点式解析式是解题的关键.12、C【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大二、填空题(每题4分,共24分)13、1【分析】根据用频率估计概率即可求出摸到白球的概率,然后利用概率公式列出方程即可求出x的值.【详解】解:∵经大量试验,发现摸到白球的频率稳定在0.95左右∴摸到白球的概率为0.95∴解得:1经检验:1是原方程的解.故答案为:1.【点睛】此题考查的是用频率估计概率和根据概率求数量问题,掌握概率公式是解决此题的关键.14、1【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.21,将A(0,1.21)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B坐标,从而可得CB的长.【详解】解:设y轴右侧的抛物线解析式为:y=a(x﹣1)2+2.21∵点A(0,1.21)在抛物线上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴抛物线的解析式为:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴点B坐标为(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案为:1.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.15、甲【分析】
【详解】∵S甲2=16.7,S乙2=28.3,∴S甲2<S乙2,∴甲的成绩比较稳定,故答案为甲.16、1【分析】作BD⊥x轴于D,BE⊥y轴于E,则四边形ODBE是矩形,利用AAS证得△ABD≌△CBE,即可证得BD=BE,然后根据勾股定理求得B的坐标,代入y=.(x>0)即可求得k的值.【详解】如图,作BD⊥x轴于D,BE⊥y轴于E,∴四边形ODBE是矩形,∴∠DBE=90°,∵∠ABC=90°,∴∠ABD=∠CBE,在△ABD和△CBE中∴△ABD≌△CBE(AAS),∴BE=BD,∴四边形ODBE是正方形,∵OB=2,根据勾股定理求得OD=BD=2,∴B(2,2),∵反比例函数y=(x>0)的图象经过点B,∴k=2×2=1,故答案为1.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形全等的判定和性质,求得B的坐标是解题的关键.17、【解析】从图中可以看出翻转的第一次是一个120度的圆心角,半径是1,所以弧长=,第二次是以点P为圆心,所以没有路程,在BC边上,第一次第二次同样没有路程,AC边上也是如此,点P运动路径的长为18、【分析】直接利用概率公式求解.【详解】解:从袋子中随机取出1个球是红球的概率,故答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.三、解答题(共78分)19、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到结论;(2)根据平角的定义得到∠BAC=40°,连接OB,OC,根据圆周角定理得到∠BOC=80°,根据弧长公式即可得到结论.【详解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D为的中点,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,连接OB,OC,∴∠BOC=80°,∴弧BC的长==.【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.20、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解.【详解】解:(1),,,∴或,所以;(2)∵,∴,即,则,∴.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21、(1)见解析;(2)85分;(3)九(1)班成绩好;(4)九(1)班成绩稳定.【解析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)根据平均数计算即可;
(3)在平均数相同的情况下,中位数高的成绩较好;
(4)先根据方差公式分别计算两个班复赛成绩的方差,再根据方差的意义判断即可.【详解】解:(1)填表:班级中位数(分)众数(分)九(1)8585九(2)80100(2)=85答:九(1)班的平均成绩为85分(3)九(1)班成绩好些因为两个班级的平均数都相同,九(1)班的中位数高,所以在平均数相同的情况下中位数高的九(1)班成绩好.(4)S21班=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,S22班=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,因为160>70所以九(1)班成绩稳定.【点睛】考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得,,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得∠BCF=∠BEF=10°,从而计算得,完成求解;(3)由(1)和(2)知,CF∥AB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小,从而完成求解.【详解】(1)∵将线段EB绕点E逆时针旋转80°,点B的对应点是点F∴,∴,即∵AB=AC=1,D是BC的中点∴,∴,∴,∴∴∴(2)如图,连接BE、EC、BF、EF由(1)可知:EB=EF=EC∴B,F,C三点共圆,点E为圆心∴∠BCF=∠BEF=10°∵,∴∴∴,(1)中的结论仍然成立(3)由(1)和(2)知,∴点F的运动路径在CF上如图,作AM⊥CF于点M∵∴点E在线段AD上运动时,点B旋转不到点M的位置∴故当点E与点A重合时,AF最小此时AF1=AB=AC=1,即AF的最小值为1.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.23、一条直角边的长为6cm,则另一条直角边的长为8cm.【分析】可设较
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育机构人才流失原因分析及吸引机制创新报告
- 物业收费权转让合同范本
- 渔货代卖合同协议书模板
- 高校与美团配送合同范本
- 续签合同时让签竞业协议
- 鲜玉米采购标准合同范本
- 电力局承包劳务合同范本
- 香蕉收购协议书模板模板
- 海底捞如何解除合同协议
- 电梯安装加工合同协议书
- 2025年中国大唐集团有限公司应届毕业生招聘笔试历年参考题库附带答案详解
- 2025年安徽交控集团所属安徽交控建设工程集团第二批招聘10人笔试参考题库附带答案详解版
- 体育场馆运行管理办法
- 学前资助实施管理办法
- 2025安全生产月如何查找身边安全隐患宣讲课件
- 疳症中医护理常规
- 2025年6月14日江苏省纪委监委比选笔试真题及解析(巡视监督岗)
- 4输变电工程施工质量验收统一表式(电缆工程电气专业)-2024年版
- 2024年中国远洋海运集团专项招聘真题
- 海宁辅警笔试题目及答案
- JG/T 438-2014建筑用真空绝热板
评论
0/150
提交评论