版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若,则下列比例式中正确的是()A. B. C. D.2.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是()A.①② B.①④ C.②③ D.②④3.已知一块圆心角为的扇形纸板,用它做一个圆锥形的圣诞帽(接缝忽略不计)圆锥的底面圆的直径是,则这块扇形纸板的半径是()A. B. C. D.4.下列事件中,是随机事件的是()A.两条直线被第三条直线所截,同位角相等B.任意一个四边形的外角和等于360°C.早上太阳从西方升起D.平行四边形是中心对称图形5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.56.将抛物线向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A. B.C. D.7.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b8.下列说法正确的是()A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是B.国家级射击运动员射靶一次,正中靶心是必然事件C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是D.如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品9.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2 B.3 C.4 D.510.已知:不在同一直线上的三点A,B,C求作:⊙O,使它经过点A,B,C作法:如图,(1)连接AB,作线段AB的垂直平分线DE;(2)连接BC,作线段BC的垂直平分线FG,交DE于点O;(3)以O为圆心,OB长为半径作⊙O.⊙O就是所求作的圆.根据以上作图过程及所作图形,下列结论中正确的是()A.连接AC,则点O是△ABC的内心 B.C.连接OA,OC,则OA,OC不是⊙的半径 D.若连接AC,则点O在线段AC的垂直平分线上11.的绝对值为()A. B. C. D.12.如果△ABC∽△DEF,相似比为2:1,且△DEF的面积为4,那么△ABC的面积为()A.1 B.4 C.8 D.16二、填空题(每题4分,共24分)13.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程有解的概率是__________。14.由4m=7n,可得比例式=____________.15.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是_____.16.已知,且,则的值为__________.17.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为的拉面,则做出来的面条的长度为__________.18.如图,已知AD∥EF∥BC,如果AE=2EB,DF=6,那么CD的长为_____.三、解答题(共78分)19.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=,样本成绩的中位数落在范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?20.(8分)解不等式组:21.(8分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了_______名学生;(2)请将两个统计图补充完整;(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.22.(10分)在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.(1)如图(1),,,⊙的半径为2,则,;(2)如图(2),已知的一边在轴上,在上,且,,.①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围.23.(10分)如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(12分)如图所示,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E,F在BC上,AD交HG于点M.(1)设矩形EFGH的长HG=ycm,宽HE=xcm.求y与x的函数关系式;(2)当x为何值时,矩形EFGH的面积S最大?最大值是多少?26.综合与探究如图,抛物线经过点、、,已知点,,且,点为抛物线上一点(异于).(1)求抛物线和直线的表达式.(2)若点是直线上方抛物线上的点,过点作,与交于点,垂足为.当时,求点的坐标.(3)若点为轴上一动点,是否存在点,使得由,,,四点组成的四边形为平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据比例的基本性质直接判断即可.【详解】由,根据比例性质,两边同时除以6,可得到,故选C.【点睛】本题考查比例的基本性质,掌握性质是解题关键.2、B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可.【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则①正确由图象可知,时,,即则,②错误由对称性可知,和的函数值相等则时,,即,③错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,,即,从而④正确综上,正确的是①④故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键.3、B【分析】利用底面周长=展开图的弧长可得【详解】设这个扇形铁皮的半径为rcm,由题意得解得r=1.故这个扇形铁皮的半径为1cm,故选:B.【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.4、A【分析】根据随机事件的概念对每一事件进行分析.【详解】选项A,只有当两条直线为平行线时,同位角才相等,故不确定为随机事件.选项B,不可能事件.选项C,不可能事件选项D,必然事件.故选A【点睛】本题考查了随机事件的概念.5、D【详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.6、D【分析】先得到抛物线y=x2-2的顶点坐标为(0,-2),再把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【详解】解:抛物线y=x2-2的顶点坐标为(0,-2),把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),
所以平移后抛物线的解析式为y=(x+3)2+1,
故选:D.【点睛】本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式,然后把抛物线的平移问题转化为顶点的平移问题.7、B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.8、C【详解】解:A、购买江苏省体育彩票“中奖”的概率是中奖的张数与发行的总张数的比值,故本项错误;B、国家级射击运动员射靶一次,正中靶心是随机事件,故本项错误;C、如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是,正确;D、如果车间生产的零件不合格的概率为,那么平均每检查1000个零件不一定会查到1个次品,故本项错误,故选C.【点睛】本题考查概率的意义,随机事件.9、B【解析】分析:根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=1即可.详解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=1.故选B.点睛:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.10、D【分析】根据三角形的外心性质即可解题.【详解】A:连接AC,根据题意可知,点O是△ABC的外心,故A错误;B:根据题意无法证明,故B错误;C:连接OA,OC,则OA,OC是⊙的半径,故C错误D:若连接AC,则点O在线段AC的垂直平分线上,故D正确故答案为:D.【点睛】本题考查了三角形的确定即不在一条线上的三个点确定一个圆,这个圆是三角形的外接圆,o是三角形的外心.11、C【分析】根据绝对值的定义即可求解.【详解】的绝对值为故选C.【点睛】此题主要考查绝对值,解题的关键是熟知其定义.12、D【解析】试题分析:根据相似三角形面积的比等于相似比的平方解答即可.解:∵△ABC∽△DEF,相似比为2:1,∴△ABC和△DEF的面积比为4:1,又△DEF的面积为4,∴△ABC的面积为1.故选D.考点:相似三角形的性质.二、填空题(每题4分,共24分)13、【分析】画树状图展示所有36种等可能的结果数,再找出使,即的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有36种等可能的结果数,其中使,即的有19种,
方程有解的概率是,故答案为:.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件的结果数目m,然后根据概率公式求出事件的概率.14、【分析】根据比例的基本性质,将原式进行变形,即等积式化比例式后即可得.【详解】解:∵4m=7n,∴.故答案为:【点睛】本题考查比例的基本性质,将比例进行变形是解答此题的关键.15、(3,﹣2)【解析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小.16、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.17、1【分析】因为面条的总长度y(cm)是面条粗细(横截面面积)x(cm2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案.【详解】解:根据题意得:y=,过(0.04,3200).
k=xy=0.04×3200=128,
∴y=(x>0),
当x=0.16时,
y==1(cm),
故答案为:1.【点睛】此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.18、9【解析】∵AD∥EF∥BC,,∴DF=6,∴FC=3,DC=DF+FC=9,故答案为9.三、解答题(共78分)19、(1)8,20,2.0≤x<2.4;(2)补图见解析;(3)该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.【解析】(1)根据题意和统计图可以求得a、b的值,并得到样本成绩的中位数所在的取值范围;(2)根据b的值可以将频数分布直方图补充完整;(3)用1000乘以样本中该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生比例即可得.【详解】(1)由统计图可得,a=8,b=50﹣8﹣12﹣10=20,样本成绩的中位数落在:2.0≤x<2.4范围内,故答案为:8,20,2.0≤x<2.4;(2)由(1)知,b=20,补全的频数分布直方图如图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.【点睛】本题考查了频数分布表、频数分布直方图、中位数等,读懂统计图与统计表,从中找到必要的信息是解题的关键.20、【分析】由题意分别求出各不等式的解集,再求出其公共解集即可得到不等式组的解集.【详解】解:,由①得,由②得,故不等式组的解集为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1)200;(2)答案见解析;(3)240人.【分析】(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由10÷5%即可求得总人数为200人;(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;②由80÷200×100%可得喜欢A项运动的人所占的百分比;由30÷200×100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;(3)由1200×20%可得全校喜欢“排球”运动的人数.【详解】解:(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,∴这次抽查的总人数为:10÷5%=200(人);(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,∴喜欢A项运动的人数为:200-10-40-30-40=80,②喜欢A项运动的人所占的百分比为:80÷200×100%=40%;喜欢D项运动的人所占的百分比为:30÷200×100%=15%;根据上述所得数据补充完两幅图形如下:(3)从抽样调查中可知,喜欢排球的人约占20%,可以估计全校学生中喜欢排球的学生约占20%,人数约为:1200×20%=240(人).答:全校学生中,喜欢排球的人数约为240人.22、(1)2,;(2)①是⊙的切线,;②或.【分析】(1)根据图形M,N间的“和睦距离”的定义结合已知条件求解即可.(2)①连接DF,DE,作DH⊥AB于H.设OC=x.首先证明∠CBO=30,再证明DH=DE即可证明是⊙的切线,再求出OE,DE的长即可求出点D的坐标.②根据,得到不等式组解决问题即可.【详解】(1)∵A(0,1),C(3,4),⊙C的半径为2,∴d(C,⊙C)=2,d(O,⊙C)=AC−2=,故答案为2;;(2)①连接,作于.设.∵,∴,解得,∴,∴,,∵是⊙的切线,∴平分,∴,∴,∵,∴,∴,∴是⊙的切线.∵,设,∵,∴,∴,,∴,∴,②∵∴B(0,)∴BD=由,,得解得或故答案为:或.【点睛】本题属于圆综合题,考查了图形M,N间的“和睦距离”,解直角三角形的应用,切线的判定和性质,不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.23、(1)证明见解析;(2)【解析】分析:(1)根据圆内接四边形的性质得到∠DCE=∠BAD,根据圆周角定理得到∠DCE=∠BAD,证明即可;(2)证明△DCE∽△ACD,根据相似三角形的性质列出比例式,计算即可.详解:(1)证明:∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE;(2)解:∵AC为直径,∴∠ADC=90°,∵DE⊥BC,∴∠DEC=90°,∴∠DEC=∠ADC,∵∠DCE=∠ACD,∴△DCE∽△ACD,∴=,即=,∴CD=3.点睛:本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.24、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元.【解析】(1)设每袋国旗图案贴纸为元,则有,解得,检验后即可求解;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得;(3)如果没有折扣,,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【详解】(1)设每袋国旗图案贴纸为元,则有,解得,经检验是方程的解,∴每袋小红旗为元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得,答:购买小红旗袋恰好配套;(3)如果没有折扣,则,依题意得,解得,当时,则,即,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【点睛】本题考查分式方程,一次函数的应用,能够根据题意列出准确的分式方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度甲方与乙方合作开展餐饮服务的合同
- 2024年建筑材料供应与结算协议
- 2024年度高等外国专家项目参与协议
- 2024年度医疗设备行业市场调查与分析合同2篇
- 2024专用汽车融资租赁与精致装潢综合服务协议版
- 2024版逆向物流回收系统搭建合同3篇
- 2024年房地产工程承包协议标准文本版B版
- 2024年度特许经营合同标的及经营范围与许可条件3篇
- 2024年房地产项目融资借款合同样本版
- 2024专业家居装修中介服务协议版A版
- 产品质量知识培训课件
- 2024保密观知识竞赛试题含答案(综合题)
- 泵管加固施工方案
- 仁爱新版英语七上Unit 5语法解析
- 小学五年级上册语文 第七单元 语文要素阅读(含解析)
- 安徽省A10联盟高三下学期最后一卷英语试题(含听力)
- 2024钢琴培训合同范本
- 全国大学英语CET四级考试试卷与参考答案(2024年)
- 沟通的艺术学习通超星期末考试答案章节答案2024年
- 贵州省遵义市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 2024年官方兽医考试题库
评论
0/150
提交评论