河南省安阳内黄县联考2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
河南省安阳内黄县联考2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
河南省安阳内黄县联考2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
河南省安阳内黄县联考2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
河南省安阳内黄县联考2022年数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm2.已知k1<0<k2,则函数y=k1x和的图象大致是()A. B. C. D.3.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.4.抛物线y=(x+2)2-3的对称轴是(

)A.直线x=2 B.直线x=-2 C.直线x=-3 D.直线x=35.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点6.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.7.如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是()A. B. C. D.8.如图,在方格纸中,点A,B,C都在格点上,则tan∠ABC的值是()A.2 B. C. D.9.下列四对图形中,是相似图形的是()A.任意两个三角形 B.任意两个等腰三角形C.任意两个直角三角形 D.任意两个等边三角形10.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm11.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定12.下列函数中,的值随着逐渐增大而减小的是()A. B. C. D.二、填空题(每题4分,共24分)13.若点(p,2)与(﹣3,q)关于原点对称,则p+q=__.14.如图,一次函数的图象与反比例函数的图象交于A(2,﹣4),B(m,2)两点.当x满足条件______________时,一次函数的值大于反比例函数值.15.如图所示,个边长为1的等边三角形,其中点,,,,…在同一条直线上,若记的面积为,的面积为,的面积为,…,的面积为,则______.16.某商场购进一批单价为16元的日用品,若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖210件,假定每月销售件数y(件)与每件的销售价格x(元/件)之间满足一次函数.在商品不积压且不考虑其他因素的条件下,销售价格定为______元时,才能使每月的毛利润w最大,每月的最大毛利润是为_______元.17.在函数中,自变量的取值范围是______.18.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=-(k>0)图象上的两个点,则y1与y2的大小关系为_____.三、解答题(共78分)19.(8分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.20.(8分)对于平面直角坐标系xOy中的点P和图形G,给出如下定义:将点P沿向右或向上的方向平移一次,平移距离为d(d>0)个长度单位,平移后的点记为P′,若点P′在图形G上,则称点P为图形G的“达成点”.特别地,当点P在图形G上时,点P是图形G的“达成点”.例如,点P(﹣1,0)是直线y=x的“达成点”.已知⊙O的半径为1,直线l:y=﹣x+b.(1)当b=﹣3时,①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三点中,是直线l的“达成点”的是:_____;②若直线l上的点M(m,n)是⊙O的“达成点”,求m的取值范围;(2)点P在直线l上,且点P是⊙O的“达成点”.若所有满足条件的点P构成一条长度不为0的线段,请直接写出b的取值范围.21.(8分)如图,在中,,为上一点,,.(1)求的长;(2)求的值.22.(10分)如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC=,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.23.(10分)如图,∠MON=60°,OF平分∠MON,点A在射线OM上,P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.(1)依题意补全图形;(2)判断线段AB,PB之间的数量关系,并证明;(3)连接AP,设,当P和Q两点都在射线ON上移动时,是否存在最小值?若存在,请直接写出的最小值;若不存在,请说明理由.24.(10分)若直线与双曲线的交点为,求的值.25.(12分)如图,在矩形中对角线、相交于点,延长到点,使得四边形是一个平行四边形,平行四边形对角线交、分别为点和点.(1)证明:;(2)若,,则线段的长度.26.如图,为的直径,、为上两点,且点为的中点,过点作的垂线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)当,时,求的长.

参考答案一、选择题(每题4分,共48分)1、D【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF-OE=1cm;当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF+OE=7cm.故选D.【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.2、D【解析】试题分析::∵k1<0<k2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D.考点:1.反比例函数的图象;2.正比例函数的图象.3、D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.4、B【解析】试题解析:在抛物线顶点式方程中,抛物线的对称轴方程为x=h,∴抛物线的对称轴是直线x=-2,故选B.5、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.6、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.7、A【分析】由BF∥AD,可得,再借助平行四边形的性质把AD转化为BC即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,∵,∴.∵BF∥AD,∴=.故选A【点睛】本题主要考查平行四边形的性质和平行线截线段成比例定理,掌握平行线截线段成比例定理是解题的关键.8、A【分析】根据直角三角形解决问题即可.【详解】解:作AE⊥BC,∵∠AEC=90°,AE=4,BE=2,∴tan∠ABC=,故选:A.【点睛】本题主要考查了解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9、D【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,对题中条件一一分析,排除错误答案.【详解】解:A、任意两个三角形,形状不确定,不一定是相似图形,故A错误;B、任意两个等腰三角形,形状不确定,不一定是相似图形,故B错误;C、任意两个直角三角形,直角边的长度不确定,不一定是相似图形,故C错误;D、任意两个等边三角形,形状相同,但大小不一定相同,符合相似形的定义,故D正确;故选:D.【点睛】本题考查的是相似形的识别,关键要联系实际,根据相似图形的定义得出.10、A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,

解得:a=2cm.

故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.11、C【解析】试题分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.解:∵a=3,b=﹣2,c=1,∴△=b2﹣4ac=4﹣12=﹣8<0,∴关于x的方程3x2﹣2x+1=0没有实数根.故选:C.考点:根的判别式.12、D【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【详解】A选项函数的图象是随着增大而增大,故本选项错误;B选项函数的对称轴为,当时随增大而减小故本选项错误;C选项函数,当或,随着增大而增大故本选项错误;D选项函数的图象是随着增大而减小,故本选项正确;故选D.【点睛】本题考查了三种函数的性质,了解它们的性质是解答本题的关键,难度不大.二、填空题(每题4分,共24分)13、1【分析】直接利用关于原点对称点的性质得出p,q的值进而得出答案.【详解】解:∵点(p,2)与(﹣3,q)关于原点对称,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握关于原点对称点的坐标之间的关系是解题关键.14、x<﹣4或0<x<2【分析】(1)根据一次函数y=-x+b的图象与反比例函数(a≠0)的图象相交于A(2,﹣4),B(m,2)两点,可以求得a=-8,m=-4,根据函数图象和点A、B的坐标可以得到当x为何值时,一次函数值大于反比例函数值.【详解】∵一次函数y=-x+b的图象与反比例函数的图象相交于A(2,-4)、B(m,2)两点,∴将x=2,y=-4代入得,a=-8;∴将x=m,y=2代入,得m=-4,∴点B(-4,2),∵点A(2,-4),点B(-4,2),∴由函数的图象可知,当x<﹣4或0<x<2时,一次函数值大于反比例函数值.故答案为:x<﹣4或0<x<2.【点睛】本题考查反比例函数和一次函数的交点问题,解题的关键是明确题意,利用数形结合的思想,找出所求问题需要的条件.15、【分析】由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上,可作出直线BB1.易求得△ABC1的面积,然后由相似三角形的性质,易求得S1的值,同理求得S2的值,继而求得Sn的值.【详解】如图连接BB1,B1B2,B2B3;由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上.∴S△ABC1=×1×=∵B

B1∥AC1,∴△BD1B1∽△AC1D1,△BB1C1为等边三角形则C1D1=BD1=;,△C1B1D1中C1D1边上的高也为;∴S1=××=;同理可得;则=,∴S2=××=;同理可得:;∴=,Sn=××=.【点睛】此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度较大,属于规律性题目,注意辅助线的作法,注意数形结合思想的应用.16、241【分析】本题首先通过待定系数法求解y与x的关系式,继而根据利润公式求解二次函数表达式,最后根据二次函数性质求解本题.【详解】由题意假设,将,代入一次函数可得:,求解上述方程组得:,则,∵,∴,∴,又因为商品进价为16元,故.销售利润,整理上式可得:销售利润,由二次函数性质可得:当时,取最大值为1.故当销售单价为24时,每月最大毛利润为1元.【点睛】本题考查二次函数的利润问题,解题关键在于理清题意,按照题目要求,求解二次函数表达式,最后根据二次函数性质求解此类型题目.17、【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x+1≠0,解得x≠−1.故答案为x≠−1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18、y1<y1【分析】根据双曲线所在的象限,得出y随x的增大而增大,即可判断.【详解】解:∵k>0,∴﹣k<0,因此在每个象限内,y随x的增大而增大,∵﹣4<﹣1,∴y1<y1,故答案为:y1<y1.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数在各象限的增减性.三、解答题(共78分)19、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考点:1.全等三角形的判定与性质;1.勾股定理.20、(1)①A,B;②﹣4≤m≤﹣2或﹣1≤m≤1;(2)﹣2≤b<.【分析】(1)①根据“达成点”的定义即可解决问题.②过点(0,1)和点(0,﹣1)作x轴的平行线分别交直线l于M1,M2,过点(1,0)和点(﹣1,0)作y轴的平行线分别交直线l于M3,M4,由此即可判断.(2)当M2与M3重合,坐标为(﹣1,﹣1)时,﹣1=1+b,可得b=﹣2;当直线l与⊙O相切时,设切点为E,交y轴于F,求出点E的坐标,即可判断.【详解】(1)①∵b=﹣3时,直线l:y=﹣x﹣3,∴直线l与x轴的交点为:(﹣3,0),直线l与y轴的交点为:(0,﹣3),∴O(0,0)在直线l的上方,∴O(0,0)不是直线l的“达成点”,∵当x=﹣4时,y=4﹣3=1,∴点A(﹣4,1)在直线l上,∴点A是直线l的“达成点”,∵点B(﹣4,﹣1)在直线l的下方,把点B(﹣4,﹣1)向上平移2个长度单位为(﹣4,1),∴点B是直线l的“达成点”,故答案为:A,B;②设直线l:y=﹣x﹣3,分别与直线y=1、y=﹣1、x=﹣1、x=1依次交于点M1、M2、M3、M4,如图1所示:则点M1,M2,M3,M4的横坐标分别为﹣4、﹣2、﹣1、1,线段M1M2上的点向右的方向平移与⊙O能相交,线段M3M4上的点向上的方向平移与⊙O能相交,∴线段M1M2和线段M3M4上的点是⊙O的“达成点”,∴m的取值范围是﹣4≤m≤﹣2或﹣1≤m≤1;(2)如图2所示:当M2与M3重合,坐标为(﹣1,﹣1)时,﹣1=1+b,∴b=﹣2;②当直线l与⊙O相切时,设切点为E,交y轴于F.由题意,在Rt△OEF中,∠OEF=90°,OE=1,∠EOF=45°,∴△OEF是等腰直角三角形,∴OF=OE=;观察图象可知满足条件的b的值为﹣2≤b<.【点睛】本题是圆的综合题,考查了直线与圆的位置关系,点P为图形G的“达成点”的定义、等腰直角三角形的判定与性质、切线的性质等知识,解题的关键是理解题意,属于中考压轴题.21、(1);(2).【分析】(1)根据,可设,得,再由勾股定理列出的方程求得,进而由勾股定理求;(2)过点作于点,解直角三角形求得与,进而求得结果.【详解】解:(1)∵,可设,得,∵,∴,解得,(舍去),或,∴,∵,∴,∴;(2)过点作于点,∵,可设,则,∵,∴,解得,(舍),或,∴,∴.【点睛】考核知识点:解直角三角形.理解三角函数的定义是关键.22、(1)证明见解析;(2)S阴影=4-2π【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE为圆O的切线.(2)S阴影=2S△ECO-S扇形COD=4-2π【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.23、(1)补全图形见解析;(2)AB=PB.证明见解析;(3)存在,.【分析】(1)根据题意补全图形如图1,

(2)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;

(3)连接BQ.只要证明△ABP∽△OBQ,即可推出,由∠AOB=30°,推出当BA⊥OM时,的值最小,最小值为,由此即可解决问题.【详解】解:(1)如图1,

(2)AB=PB.证明:如图,连接BQ.∵BC的垂直平分OQ,∴OB=BQ,∴∠BOP=∠BQP.又∵OF平分∠MON,∴∠AOB=∠BOP.∴∠AOB=∠BQP.又∵PQ=OA,∴△AOB≌△PQB,∴AB=PB.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论