2023届江苏省镇江市丹阳三中学数学九年级第一学期期末达标测试试题含解析_第1页
2023届江苏省镇江市丹阳三中学数学九年级第一学期期末达标测试试题含解析_第2页
2023届江苏省镇江市丹阳三中学数学九年级第一学期期末达标测试试题含解析_第3页
2023届江苏省镇江市丹阳三中学数学九年级第一学期期末达标测试试题含解析_第4页
2023届江苏省镇江市丹阳三中学数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是()A.转化 B.整体思想 C.降次 D.消元2.小红抛掷一枚质地均匀的骰子,骰子六个面分别刻有1到6的点数,下列事件为必然事件的是()A.骰子向上一面的点数为偶数 B.骰子向上一面的点数为3C.骰子向上一面的点数小于7 D.骰子向上一面的点数为63.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是()A. B. C. D.4.如图,已知点在的边上,若,且,则()A. B. C. D.5.如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①②③④四个三角形.若,则下列结论中一定正确的是()A.①和②相似 B.①和③相似 C.①和④相似 D.③和④相似6.如图,在平面直角坐标系中,直线OA过点(4,2),则的值是()A. B. C. D.27.下列事件中是必然发生的事件是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.射击运动员射击一次,命中十环C.在地球上,抛出的篮球会下落D.明天会下雨8.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A.18米

B.16米

C.20米

D.15米9.下列计算错误的是()A. B. C. D.10.已知,则下列比例式成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.像=x这样的方程,可以通过方程两边平方把它转化为2x+2=x2,解得x1=2,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=2时,=2满足题意;当x2=﹣1时,=﹣1不符合题意;所以原方程的解是x=2.运用以上经验,则方程x+=1的解为_____.12.如图,在中,,若,则__________.13.已知:如图,在平面上将绕点旋转到的位置时,,则为__________度.14.在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.15.如图,抛物线解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是_____.16.二次函数,当时,的最大值和最小值的和是_______.17.如果,那么=.18.方程的根是_____.三、解答题(共66分)19.(10分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?20.(6分)如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.21.(6分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了_______名学生;(2)请将两个统计图补充完整;(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.22.(8分)如图,是□ABCD的边延长线上一点,连接,交于点.求证:△∽△CDF.23.(8分)如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱上的线段重合,长为0.2米,当踏板连杆绕着点旋转到处时,测得,此时点距离地面的高度为0.44米.求:(1)踏板连杆的长.(2)此时点到立柱的距离.(参考数据:,,)24.(8分)如图,在中,,,为外一点,将绕点按顺时针方向旋转得到,且点、、三点在同一直线上.(1)(观察猜想)在图①中,;在图②中,(用含的代数式表示)(2)(类比探究)如图③,若,请补全图形,再过点作于点,探究线段,,之间的数量关系,并证明你的结论;(3)(问题解决)若,,,求点到的距离.25.(10分)某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?26.(10分)如图,若是由ABC平移后得到的,且中任意一点经过平移后的对应点为(1)求点小的坐标.(2)求的面积.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂题意是关键.2、C【分析】必然事件就是一定发生的事件,依据定义即可判断.【详解】A、骰子向上一面的点数为偶数是随机事件,选项错误;B、骰子向上一面的点数为3是随机事件,选项错误;C、骰子向上一面的点数小于7是必然事件,选项正确;D、骰子向上一面的点数为6是随机事件,选项错误.故选:C.【点睛】本题考查了随机事件与必然事件,熟练掌握必然事件的定义是解题的关键.3、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是=;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4、D【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.5、B【解析】由题图可知,,由,可得即可得出【详解】由题图可知,,结合,可得.故选B.【点睛】当题中所给条件中有两个三角形的两边成比例时,通常考虑利用“两边成比例且夹角相等”的判定方法判定两个三角形相似一定要记准相等的角是两边的“夹角”,否则,结论不成立(类似判定三角形全等的方法“SAS").6、A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD⊥x轴交OA于点C,交x轴于点D,∵在平面直角坐标系中,直线OA过点(4,2),∴OD=4,CD=2,∴tanα===,故选A.【点睛】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.7、C【解析】试题分析:A.抛两枚均匀的硬币,硬币落地后,都是正面朝上是随机事件,故A错误;B.射击运动员射击一次,命中十环是随机事件,故B错误;C.在地球上,抛出的篮球会下落是必然事件,故C正确;D.明天会下雨是随机事件,故D错误;故选C.考点:随机事件.8、A【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】根据题意解:标杆的高:标杆的影长=旗杆的高:旗杆的影长,即1.5:2.5=旗杆的高:30,∴旗杆的高==18米.故选:A.【点睛】考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗杆的高.9、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A:,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据,进行判断.10、C【分析】依据比例的性质,将各选项变形即可得到正确结论.【详解】解:A.由可得,2y=3x,不合题意;B.由可得,2y=3x,不合题意;C.由可得,3y=2x,符合题意;D.由可得,3x=2y,不合题意;故选:C.【点睛】本题主要考查了比例的性质,解决问题的关键是掌握:内项之积等于外项之积.二、填空题(每小题3分,共24分)11、x=﹣1【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,检验:x=4时,4+=5,左边≠右边,∴x=4不是原方程的解,当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.12、6【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.13、1【分析】结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算.【详解】解:∵AA′∥BC,

∴∠A′AB=∠ABC=65°.

∵BA′=AB,

∴∠BA′A=∠BAA′=65°,

∴∠ABA′=1°,

又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',

∴∠CBC′=∠ABA′=1°.

故答案为:1.【点睛】本题考查旋转的性质以及平行线的性质.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.14、二、四.【解析】试题解析:根据关联点的特征可知:如果一个点在第一象限,它的关联点在第三象限.如果一个点在第二象限,它的关联点在第二象限.如果一个点在第三象限,它的关联点在第一象限.如果一个点在第四象限,它的关联点在第四象限.故答案为二,四.15、(0,n2+n)【分析】根据待定系数法分别求得直线OA1、A2B1、A2B2……的解析式,即可求得P1、P2、P3…的坐标,得出规律,从而求得点Pn的坐标.【详解】解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴Pn(0,n2+n),故答案为(0,n2+n).【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据一次函数图象上点的坐标特征得出规律是解题的关键.16、【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】抛物线的对称轴是x=1,则当x=1时,y=1−2−3=−1,是最小值;当x=3时,y=9−6−3=0是最大值.的最大值和最小值的和是-1故答案为:-1.【点睛】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.17、【解析】试题分析:本题主要考查的就是比的基本性质.根据题意可得:=+=+1=+1=.18、0和-4.【分析】根据因式分解即可求解.【详解】解∴x1=0,x2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.三、解答题(共66分)19、(1)22%;(2)22元.【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达1.8万人次.列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可.【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增长率为22%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y﹣6)[322+32(25﹣y)]=6322,整理得:y2﹣41y+422=2,解得:y1=22,y2=3.∵让顾客获得最大优惠,∴y=22.答:当每杯售价定为22元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6322元的利润额.

【点睛】本题考查了一元二次方程在实际问题中的应用,理清题中的数量关系并正确列出方程是解题的关键.20、(1)5;(2)∥,理由见解析;(3)【分析】(1)求出AE=,证明△ABE∽△DEA,由可求出AD的长;(2)过点E作EF⊥AD于点F,证明△PEF∽△QEC,再证△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',则结论得证;(3)由(2)知PQ∥A′D′,取A′D′的中点N,可得出∠PEM为定值,则点M的运动路径为线段,即从AD的中点到DE的中点,由中位线定理可得出答案.【详解】解:(1)∵AB=2,BE=1,∠B=90°,∴AE===,∵∠AED=90°,∴∠EAD+∠ADE=90°,∵矩形ABCD中,∠ABC=∠BAD=90°,∴∠BAE+∠EAD=90°,∴∠BAE=∠ADE,∴△ABE∽△DEA,∴,∴,∴AD=5;(2)PQ∥A′D′,理由如下:∵,∠AED=90°∴==2,∵AD=BC=5,∴EC=BC﹣BE=5﹣1=4,过点E作EF⊥AD于点F,则∠FEC=90°,∵∠A'ED'=∠AED=90°,∴∠PEF=∠CEQ,∵∠C=∠PFE=90°,∴△PEF∽△QEC,∴,∵,∴,∴PQ∥A′D′;(3)连接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴=为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长==.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.21、(1)200;(2)答案见解析;(3)240人.【分析】(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由10÷5%即可求得总人数为200人;(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;②由80÷200×100%可得喜欢A项运动的人所占的百分比;由30÷200×100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;(3)由1200×20%可得全校喜欢“排球”运动的人数.【详解】解:(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,∴这次抽查的总人数为:10÷5%=200(人);(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,∴喜欢A项运动的人数为:200-10-40-30-40=80,②喜欢A项运动的人所占的百分比为:80÷200×100%=40%;喜欢D项运动的人所占的百分比为:30÷200×100%=15%;根据上述所得数据补充完两幅图形如下:(3)从抽样调查中可知,喜欢排球的人约占20%,可以估计全校学生中喜欢排球的学生约占20%,人数约为:1200×20%=240(人).答:全校学生中,喜欢排球的人数约为240人.22、详见解析【分析】利用平行四边形的性质即可证明.【详解】证明:∵四边形ABCD是平行四边形,∴∠∠,∥,∴∠∠.∴△∽△【点睛】本题主要考查相似三角形的判定,掌握平行四边形的性质是解题的关键.23、(1)1.2米(2)0.72米【解析】(1)过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF=0.44,故BG=0.24设AG=x,求得AB=x+0.24,AC=AB=x+0.24,根据余弦的定义列方程即可求出x,即可求出AB的长;(2)利用正弦即可求出CG的长.【详解】(1)过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.44,故BG=0.24设AG=x,∴AB=x+0.24,AC=AB=x+0.24,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG==0.8,解得:x=0.96,经检验,x=0.96符合题意,∴AB=x+0.24=1.2(米),(2)点到立柱的距离为CG,故CG=ACsin37°=1.2×0.6=0.72(米)【点睛】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.24、(1);;(2),证明见解析;(3)点到的距离为或.【分析】(1)在图①中由旋转可知,由三角形内角和可知∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,因为,∠OAP+∠PAB=∠OAB,所以∠APB=∠AOB=α;在图②中,由旋转可知,得到∠OBP+OAP=180°,通过四边形OAPB的内角和为360°,可以得到∠AOB+∠APB=180°,因此∠APB=;(2)由旋转可知≌,,,,因为,得到,即可得证;(3)当点在上方时,过点作于点,由条件可求得PA,再由可求出OH;当点在下方时,过点作于点,同理可求出OH.【详解】(1)①由三角形内角和为180°得到∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,由旋转可知,又∵∠OAP+∠PAB=∠OAB,∴∠OBP+∠PAB+∠ABO+∠AOB=180°,即∠PAB+∠ABP+∠AOB=180°,∴∠APB=∠AOB=α;②由旋转可知,∵=180°,∴∠OBP+OAP=180°,又∵∠OBP+OAP+∠AOB+∠APB=360°,∴∠AOB+∠APB=180°,∴∠APB=;(2)证明:由绕点按顺时针方向旋转得到∴≌,,,,又∵,∴∴(3)【解法1】(i)如图,当点在上方时,过点作于点由(1)知,,∵∴由(2)知,∴(ii)如图,当点在下方时,过点作于点由(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论